Оглавление

Гистология, эмбриология, цитология : учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.
Гистология, эмбриология, цитология : учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.
Глава 10. НЕРВНАЯ ТКАНЬ

Глава 10. НЕРВНАЯ ТКАНЬ

Нервная ткань - это система взаимосвязанных дифферонов нервных клеток, нейроглии и глиальных макрофагов, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и его передачи. Она является основой строения органов нервной системы . В каждой части нервной системы клеточно-дифферонный состав нервной ткани и ее морфофункциональные особенности неповторимы. Это обеспечивает оптимальную регуляцию жизнедеятельности всех тканей и органов, их интеграцию в организме и связь с окружающей средой.

Нервные клетки (нейроны, neuronum) - основные гистологические элементы нервной ткани, осуществляют восприятие сигнала, передачу его другим нервным клеткам или клеткам-эффекторам с помощью нейромедиато-ров. Нейроглия (neuroglia) обеспечивает существование и функционирование нервных клеток, выполняет опорную, трофическую, разграничительную, секреторную и защитную функции. Микроглия - клетки, часть которых относится к системе мононуклеарных фагоцитов (см. ниже).

10.1. РАЗВИТИЕ НЕРВНОЙ ТКАНИ

Нервная ткань развивается из дорсальной части эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Передний конец нервной пластинки расширяется, образуя позднее головной мозг. Латеральные края продолжают подниматься и растут медиально, пока не встретятся и не сольются по средней линии в нервную трубку, которая отделяется от лежащей над ней эпидермальной эктодермы. Полость нервной трубки сохраняется у взрослых в виде системы желудочков головного мозга и центрального канала спинного мозга. Часть клеток нервной пластинки не входят в состав нервной трубки и эпи-

Рис. 10.1. Формирование нервной трубки зародыша цыпленка (по А. Г. Кнорре): а - стадия нервной пластинки; б - замыкание нервной трубки; в - обособление нервной трубки и ганглиозной пластинки от эктодермы. 1 - нервный желобок; 2 - нервные валики; 3 - кожная эктодерма; 4 - хорда; 5 - мезодерма; 6 - ганглиозная пластинка; 7 - нервная трубка; 8 - мезенхима; 9 - энтодерма

дермальной эктодермы и образуют скопления по бокам от нервной трубки, которые сливаются в рыхлый тяж, располагающийся между нервной трубкой и эпидермальной эктодермой, - нервный гребень (ганглиозная пластинка) (рис. 10.1). Из нервной трубки в дальнейшем формируются нейроны и нейроглия (макроглия) центральной нервной системы. Нервный гребень дает начало нейронам чувствительных (сенсорных) и автономных ганглиев, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ган-

глиев, клеткам мозгового вещества надпочечников, меланоцитам кожи, части клеток дисперсной эндокринной системы, сенсорным клеткам каро-тидных телец и др.

В формировании ганглиев V, VII, IX и X черепных нервов принимают участие, кроме нервного гребня, также нейральные (нейрогенные) плакоды, представляющие собой утолщения эктодермы по бокам формирующейся нервной трубки в краниальном отделе зародыша.

Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из стволовых матричных (вентри-кулярных) клеток. Матричные клетки в результате асимметричного митоза и под влиянием факторов микроокружения способны дивергентно дифференцироваться в различные клеточные диффероны - нейробластический, глиобластический и эпендимобластический. Увеличение числа клеток приводит к тому, что в нервной трубке формируются четыре концентрических зоны, ограниченные поверхностной и перивентрикулярной глиальными пограничными мембранами: вентрикулярная (эпендимная), субвентрикулярная, промежуточная (плащевая) и краевая (маргинальная) (рис. 10.2, а).

Вентрикулярная (эпендимная) зона состоит из делящихся стволовых (матричных) клеток цилиндрической формы. Ядро вентрикулярной клетки мигрирует в ту часть клетки, которая обращена к центральному каналу. Клетки делятся и после деления ядра дочерних клеток перемещаются в апикальные части образующихся клеток, где вновь происходит репликация ДНК. Митотический цикл и цикл ядерной миграции продолжаются от 5 до 24 ч.

Субвентрикулярная зона состоит из клеток, утративших способность к перемещению ядер, но сохраняющих высокую пролиферативную активность. Субвентрикулярная зона определяется в области спинного мозга в течение нескольких суток, но в тех областях головного мозга, где гистогенез совершается особенно интенсивно, формируются субвентрикулярные и экстравентрикулярные герминативные (камбиальные) зоны, существующие длительное время. Так, экстравентри-кулярная камбиальная зона мозжечка исчезает у человека к 20 мес постнатального онтогенеза.

Промежуточная (плащевая, мантийная) зона состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон - нейробластов и глиобластов. Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны. Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. Зрелые формы последних полностью не утрачивают способность к делению. Поскольку число нейронов в головном мозге составляет примерно 1 триллион, очевидно, в среднем в течение всего пренатального периода в 1 мин формируется 2 500 000 нейронов. Из клеток промежуточной зоны образуются серое вещество спинного и часть серого вещества головного мозга.

Маргинальная зона (краевая вуаль) формируется из врастающих в нее аксонов нейробластов и макроглии и дает начало белому веществу. В некоторых областях головного мозга клетки промежуточной зоны мигрируют дальше, образуя кортикальные пластинки - скопления клеток, из которых формируется кора большого мозга и мозжечка.

Рис. 10.2. Развитие мозга и дифференци-ровка нейронов:

а - спинной мозг на разных стадиях развития (по Хардести); I - нервная пластинка, II, III - нервная трубка на более поздних стадиях развития: 1 - митотиче-ски делящаяся клетка нервной пластинки; 2 - митотически делящаяся клетка в вен-трикулярной зоне (эпендимном слое); 3 - промежуточная зона (ядерный, плащевой слой); 4 - маргинальная зона (наружный слой, краевая вуаль); 5 - внутренняя пограничная мембрана; 6 - наружная пограничная мембрана; 7 - мезенхима; б - стадии дифференцировки эфферентного нейрона внутрисердечного ганглия человека (по В. Н. Швалеву, А. А. Сосунову, Г. Гуски): I - нейробласт; II - нейробласт с формирующимися отростками; III - юный нейрон с формирующимися синаптическими пузырьками и синапсами; IV - дифференцирующийся нейрон с органеллами в перикарионе и растущим аксоном; V - зрелый нейрон с крупным перикарионом, многочисленными синапсами и аксоном, сформировавшим нервно-мышечное окончание на кардиомиоцитах; А1 - пре-ганглионарные волокна; А2 - постгангли-онарные волокна; Эфф - эфферентное нервно-мышечное окончание; АС - аксо-соматические синапсы; АД - аксоден-дритические синапсы; Г - глиоциты

В нейробластическом диффероне кроме матричных клеток выделяют ней-робласты, молодые и зрелые нейроны. По сравнению с матричными клетками у нейробласта изменяется ультрамикроскопическое строение ядра и цитоплазмы. В ядре возникают участки различной электронной плотности в виде мелких зерен и нитей. В цитоплазме выявляются в большом количестве канальцы и цистерны гранулярной эндоплазматической сети, уменьшается количество свободных рибосом и полисом, значительного развития достигает комплекс Гольджи, обнаруживаются тонкие фибриллы - пучки нейрофиламентов и микротрубочек. Количество нейрофиламентов, содержащих белок - нейро-филаментный триплет, в процессе специализации увеличивается. Тело ней-робласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отросток - аксон (нейрит). Позднее дифференцируются другие отростки - дендриты.

Для молодого нейрона характерно увеличение объема клетки, рост отростков, образование хроматофильной субстанции и появление первых синапсов.

В процессе дифференцировки нейронов из нейробластов различают домедиаторный и медиаторный периоды (см. рис. 10.2, б). Для домедиатор-ного периода характерно постепенное развитие в теле нейробласта органелл синтеза - свободных рибосом, а затем эндоплазматической сети. В медиа-торном периоде у молодых нейронов появляются первые пузырьки, содержащие медиатор, а в зрелых нейронах отмечаются значительное развитие органелл синтеза и секреции (гранулярная эндоплазматическая сеть, комплекс Гольджи), накопление медиаторов и поступление их в аксон, образование синапсов. В целом, развитие зрелого нейрона - наиболее длительный процесс. Клетка принимает окончательную форму, гистохимическую организацию, интегрируется в состав рефлекторной дуги и нейронной сети, устанавливаются нейроно-глиальные взаимоотношения и др.

Несмотря на то, что формирование нервной системы завершается в первые годы постнатального развития, пластичность ЦНС сохраняется до старости. Эта пластичность может выражаться в появлении новых тер-миналей и новых синаптических связей. Нейроны центральной нервной системы млекопитающих способны формировать новые ветви (аксональное почкование) и новые синапсы (синаптическое замещение). Пластичность проявляется в наибольшей степени в первые годы после рождения, но частично сохраняется и у взрослых, например при изменении содержания гормонов, обучении новым навыкам, травмах. Хотя нейроны постоянны, их синаптические связи могут модифицироваться в течение всей жизни, что может выражаться, в частности, в увеличении или уменьшении их числа. Пластичность при малых повреждениях мозга проявляется частичным восстановлением функций.

В популяции нейронов, начиная с ранних стадий развития нервной системы и в течение всего онтогенеза, имеет место массовая гибель клеток, достигающая 25-75 % всей популяции. Эта запрограммированная физиологическая гибель клеток (апоптоз) наблюдается как в центральной, так и в периферической нервной системе; при этом мозг теряет около 0,1 % нейронов.

10.2. НЕЙРОНЫ

Нейрон (neuronum), или нервная клетка, - специализированная клетка нервной системы, ответственная за восприятие, обработку стимулов, проведение импульса и влияние на другие нейроны, мышечные или секреторные клетки. Нейроны выделяют нейромедиаторы и другие вещества, передающие информацию. Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптиче-ский контакт с другими нейронами, образуя рефлекторные дуги - звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают рецепторные (чувствительные, афферентные), ассоциативные и эфферентные (эффекторные) нейроны. Афферентные нейроны воспринимают импульс, эфферентные передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные осуществляют связь между нейронами. Нейроны отличаются большим разнообразием формы и размеров. Диаметр тел клеток-зерен коры мозжечка равен 4-6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга - 130- 150 мкм. Обычно нейроны состоят из тела, или перикариона (corpus neu-ronis), и отростков: аксона и различного числа ветвящихся дендритов. По количеству отростков различают униполярные нейроны, имеющие только аксон (у высших животных и человека обычно не встречаются), биполярные, имеющие аксон и один дендрит, и мультиполярные, имеющие аксон и много дендритов (рис. 10.3, 10.4). Иногда среди биполярных ней-

Рис. 10.3. Нейрон (по И. Ф. Иванову): 1 - тело нейрона; 2 - осевой цилиндр; 3 - миелиновая оболочка в разрезе; 4 - ядра нейролеммоцитов; 5 - миелиновый слой; 6 - насечка миелина; 7 - узловой перехват нервного волокна; 8 - нервное волокно, лишенное миелина; 9 - нервно-мышечное (двигательное) окончание; 10 - миелиновые нервные волокна, обработанные осмиевой кислотой

Рис. 10.4. Виды нервных клеток (по Т. Н. Радостиной, Л. С. Румянцевой):

а - униполярный нейрон; б - псевдоуниполярный нейрон; в - биполярный нейрон;

г - мультиполярный нейрон

ронов встречается псевдоуниполярный, от тела которого отходит один общий вырост - отросток, разделяющийся затем на дендрит и аксон (рис. 10.4, б). Псевдоуниполярные нейроны присутствуют в спинномозговых ганглиях, биполярные - в органах чувств. Большинство нейронов мультиполяр-ные. Их форма чрезвычайно разнообразна. Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами (telodendron), последние заканчиваются терминальными утолщениями.

Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем.

Цитоплазма нейрона. Подавляющее большинство нейронов человека содержит одно ядро, расположенное чаще в центре, реже - эксцентрично. Двуядерные и тем более многоядерные нейроны встречаются крайне редко. Исключение составляют нейроны некоторых ганглиев автономной нервной системы; например, в простате и шейке матки иногда встречаются нейроны, содержащие до 15 ядер. Форма ядер нейронов округлая. В соответствии с высокой активностью метаболизма нейронов хроматин в их ядрах отличается низкой степенью конденсации. В ядре имеется одно, а иногда два-три крупных ядрышка. Усиление функциональной активности нейронов обычно сопровождается увеличением объема (и количества) ядрышек.

Хроматофильное вещество (тигроид, или тельца Ниссля). При окрашивании нервной ткани анилиновыми красителями (тионин, толуидиновый синий, крезиловый фиолетовый и др.) в цитоплазме нейронов выявляется в виде базофильных глыбок и зерен различных размеров и формы хромато-фильное вещество (substantia chromatophilica) (см. рис. 10.5, а). Базофильные

Рис. 10.5. Хроматофильное вещество (глыбки Ниссля) и нейрофибриллярный аппарат в нейронах (микропрепараты). Строение секреторного нейрона (по И. Г. Акмаеву): а - хроматофильное вещество (окраска толуидиновым синим по методу Ниссля); б - нейрофибриллы; в - униполярный нейрон (б, в - импрегнация нитратом серебра): 1 - хроматофильное вещество; 2 - аксон; 3 - дендриты; 4 - отросток нейрона; г - секреторный нейрон: 1 - ядро; 2 - канальцы эндоплазматической сети; 3 - скопления канальцев; 4 - комплекс Гольджи; 5 - нейросекреторные гранулы; 6 - митохондрия; 7 - лизосомы; 8 - синапсы; 9 - гемокапилляр; 10 - эпендимный эпителий желудочков мозга; 11 - передняя доля гипофиза

Рис. 10.6. Ультраструктурная организация нервной клетки коры головного мозга (схема по И. Г. Павловой):

1 - плазмолемма; 2 - ядро; 3 - гранулярная эндоплазматическая сеть (хроматофильное вещество); 4 - комплекс Гольджи; 5 - лизосомы; 6 - митохондрии; 7 - нейрофиламенты; 8 - микротрубочки; 9 - дендрит; 10 - аксодендритные синапсы;

11 - аксосоматические синапсы

глыбки локализуются в перикарионах и дендритах нейронов, но никогда не обнаруживаются в аксонах и их конусовидных основаниях - аксональных холмиках. Базофилия глыбок объясняется высоким содержанием рибону-клеопротеидов. Электронная микроскопия показала, что каждая глыбка хроматофильного вещества состоит из цистерн гранулярной эндоплазма-тической сети, свободных рибосом и полисом (рис. 10.6).

Гранулярная эндоплазматическая сеть синтезирует нейросекреторные белки, интегральные белки плазмолеммы и белки лизосом. Свободные рибосомы и полисомы синтезируют белки цитозоля (гиалоплазмы) и неинтегральные белки плазмолеммы нейронов. Для выполнения функций нейронам требуется огромное количество белков. Для аксонов характерен

постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1-3 мм в сутки.

Комплекс Гольджи в нейронах хорошо развит. При световой микроскопии он выявляется в виде различных по форме колечек, извитых нитей, зернышек. Его ультраструктура обычна. Пузырьки комплекса Гольджи транспортируют белки, синтезированные в гранулярной эндоплазматиче-ской сети либо к плазмолемме (интегральные белки), либо в терминали (нейропептиды, нейросекрет), либо в лизосомы (лизосомальные гидролазы и мембраны лизосом).

Митохондрии обеспечивают энергией такие процессы, как транспорт ионов и синтез белков. Нейроны нуждаются в постоянном притоке глюкозы и кислорода с кровью, и прекращение кровоснабжения головного мозга вызывает потерю сознания.

Лизосомы участвуют в ферментативном расщеплении компонентов клетки, рецепторов и мембран.

Из элементов цитоскелета в цитоплазме нейронов присутствуют промежуточные филаменты (нейрофиламенты) диаметром 12 нм, микротрубочки (нейротубулы) диаметром 24-27 нм и актиновые микрофиламен-ты. Пучки нейрофиламентов на препаратах, импрегнированных нитратом серебра, видны на уровне световой микроскопии в виде нитей - нейро-фибрилл, которые являются по существу артефактом (см. рис. 10.5, б, в). Микротрубочки и связанные с ними белки обеспечивают цитоплазмати-ческий транспорт веществ, особенно в аксоне. Промежуточные филаменты выполняют механическую функцию, поддерживая форму тела нейрона и отростков. Актиновые филаменты вместе с другими белками участвуют в изменении формы тела нейрона и отростков (например, в конусе роста).

Дендриты (dendriti) представляют собой ветвящиеся отростки, которые начинаются рецепторами. В своей проксимальной части они содержат те же органеллы, что и тело клетки: глыбки хроматофильного вещества, митохондрии, большое количество нейротубул (микротрубочек) и нейрофиламен-тов. Плазмолемма дендритов имеет рецепторы, вследствие чего они проводят возбуждение к перикариону. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 раз и более. Так, дендриты грушевидных нейронов (клеток Пуркинье) коры мозжечка увеличивают площадь рецеп-торной поверхности от 250 до 27 000 мкм2, и на поверхности этих клеток обнаруживается до 200 000 синаптических окончаний. Дендриты многих нейронов имеют небольшие выросты - шипики. Это динамические структуры, способные изменять свою форму, размеры, что отражается на синап-тической передаче нервного импульса к телу нейрона.

Аксон (axon) - отросток, по которому импульс передается от тела клетки. Его длина варьирует от нескольких микрометров до метра. Аксон содержит митохондрии, нейротубулы и нейрофиламенты, эндоплазматическую сеть, мультивезикулярные тельца диаметром около 0,5 мкм. Место отхождения аксона от тела нейрона называется аксонным холмиком. Это участок генерации потенциала действия. Здесь располагается большое число ионных каналов в плазмолемме. Ионные каналы могут быть открыты, закрыты или

Рис. 10.7. Функциональные зоны мультиполярного нейрона (по Г. Р. Нобаку, Н. Л. Стромингеру, Р. Демаресту):

I - рецепторный сегмент; II - передающий сегмент; III - эффекторный сегмент. 1 - тело нейрона с ядром; 2 - дендриты; 3 - аксон с миелиновой оболочкой; 4 - мышечное волокно с терминалями аксона; 5 - изменения мембранного потенциала

инактивированы. В покоящемся нейроне мембранный потенциал покоя равен 60-70 мВ. Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом (рис. 10.7).

В результате поступления возбуждающего импульса на плазмолемме клетки происходит частичная деполяризация. Когда она достигает критического (порогового) уровня, натриевые каналы открываются, позволяя ионам Na+ войти в клетку. Деполяризация усиливается, и при этом открывается еще больше натриевых каналов. Может быть также периполяризация - обратный мембранный потенциал, когда наружная поверхность плазмолеммы заряжается отрицательно, а обращенная к цитоплазме - положительно. Натриевые каналы инактивируются за 1-2 мс. Калиевые каналы также открываются, но медленнее и на более продолжительный срок, что позволяет К+ выйти из клетки и восстановить потенциал до прежнего уровня, иначе может возникнуть гиперполяризация. Через 1-2 мс (рефрактерный период) каналы возвращаются в нормальное состояние, и мембрана может вновь отвечать на стимулы. Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте. Особенности передачи нервного импульса в миелиновых нервных волокнах будут изложены после описания их строения.

Аксональный транспорт (аксоплазматический транспорт) - это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, в транспорте участвуют белки - кинезин и динеин. Транспорт веществ от тела клетки в отростки называется антероградным, к телу - ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400-2000 мм в день) и медленным (1-2 мм в сутки). Обе транспортные системы присутствуют как в аксонах, так и в дендритах.

Антероградная быстрая система проводит мембранозные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды, предшественники нейромедиаторов и другие белки. Ретроградная быстрая система проводит использованные материалы для деградации в лизосомах, распределения и рециркуляции и, возможно, факторы роста нервов. Нейротубулы - органеллы, ответственные за быстрый транспорт, который называется также нейротубулоза-висимым. Когда нейротубулы разрушены, быстрый транспорт прекращается. АТФ и Са2+ обеспечивают эти движения. На одной нейротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении. Одновременно по одной нейротубуле могут двигаться два пузырька в противоположных направлениях. Медленный транспорт - это антероградная система, проводящая белки и другие вещества для обновления и поддержания аксоплазмы (цитозоля) зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.

Аксональный транспорт есть выражение единства нейронов. Благодаря ему поддерживается постоянная связь между телом клетки (трофическим центром) и отростками. С его помощью тело клетки информировано о метаболических потребностях и условиях дисталь-ных частей. При поглощении экстрацеллюлярных веществ, таких как фактор роста нервов, с последующим ретроградным транспортом, тело клетки может «оценивать» окружающую среду. Однако ретроградный транспорт имеет отрицательное свойство. С ним нейротропные вирусы, такие как вирус бешенства, доставляются в ЦНС. Дефект нейро-тубул может быть причиной некоторых неврологических нарушений у человека.

Секреторные нейроны

Способность синтезировать и секретировать биологически активные вещества, в частности медиаторы (ацетилхолин, норадреналин, серотонин и др.), свойственна всем нейронам. Однако существуют нейроны, специализированные преимущественно на выполнении этой функции, - секреторные нейроны (neuronum secretorium), например клетки нейросекреторных ядер гипоталамической области головного мозга (см. рис. 10.5, г). Секреторные нейроны имеют ряд специфических морфологических признаков. Это крупные нейроны. Хроматофильное вещество преимущественно располагается по периферии тела клеток. В цитоплазме нейронов и в аксонах находятся различной величины гранулы секрета - нейросекрета (substantia neurosecretoria), содержащие белок, а в некоторых случаях липиды и поли-

сахариды. Гранулы нейросекрета выводятся в кровь или цереброспинальную жидкость. Многие секреторные нейроны имеют ядра неправильной формы, что свидетельствует об их высокой функциональной активности. Нейросекреты играют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

10.3. НЕЙРОГЛИЯ

Нейроны - высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия (neuroglia). Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержания постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы (рис. 10.8-10.10).

Рис. 10.8. Глиоциты различных видов (по Т. Н. Радостиной и Л. С. Румянцевой):

1 - эпендимоциты; 2 - протоплазматические астроциты; 3 - волокнистые астроци-

ты; 4 - олигодендроциты; 5 - микроглия

Глия центральной нервной системы. Клетки глии центральной нервной системы делятся на макроглию (глиоциты) и микроглию. Макроглия развивается из глиобластов нервной трубки. К макроглии относятся эпендимоциты, астроциты и олигодендроциты.

10.3.1. Макроглия

Эпендимоциты (ependymocyti) выстилают желудочки головного мозга и центральный канал спинного мозга (рис. 10.11). Это клетки цилиндрической формы. Они образуют слой типа эпителия. Между соседними клетками имеются щелевые соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между ними в нервную ткань. Большинство эпендимоци-тов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань, и почти лишены ресничек. Такие клетки называются таницитами. Они в большом количестве содержатся в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость. Цитоплазма эпендимоци-тов содержит многочисленные митохондрии, комплекс Гольджи, расположенный над ядром и слаборазвитую гранулярную эндоплазмати-ческую сеть.

Рис. 10.9. Участие глиоцитов в образовании миелиновых волокон в центральной (а) и периферической (б) нервной системе (по К. Л. Хунквейра, Х. Карнейро, P. O. Келей):

1 - дендриты; 2 - синапс; 3 - перика-рион; 4 - аксонный холмик; 5 - аксон; 6 - миелин; 7 - олигодендроцит; 8 - узловой перехват; 9 - нейролеммоци-ты (шванновские клетки); 10 - нейро-мышечное соединение

Астроциты (astrocyti, от греч. astron - звезда, kytos - клетка) - клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную, разграничи-

Рис. 10.10. Взаимоотношения нейрона, астроглии, олигодендроглии и нервных тер-миналей (по Г. Р. Нобаку, Н. Л. Стромингеру, Р. Д. Демаресту):

1 - тело нейрона; 2 - дендриты; 3 - аксон; 4 - астроцит; 5 - олигодендроцит; 6 - аксоаксональный синапс; 7 - аксодендритный синапс; 8 - аксосоматический синапс; 9 - капилляр; 10 - периваскулярная ножка астроцита

Рис. 10.11. Эпендимоциты желудочка мозга (по Г. Р. Нобаку, Г. Л. Стромингеру, Р. Д. Демаресту):

1 - полость желудочка; 2 - эпендимоциты; 3 - капилляры сосудистого сплетения; 4 - головной мозг; 5 - мягкая оболочка мозга; 6 - паутинная оболочка; 7 - субарах-ноидальное пространство; 8 - нейроны

Рис. 10.12. Олигодендроцит и образование слоев миелина в нервных волокнах ЦНС (по Бунге и др.):

1 - олигодендроцит; 2 - нервные волокна; 3 - цитоплазма олигодендроцита; 4 - аксон; 5 - межклеточное пространство

тельную и метаболические функции (см. рис. 10.10). Различают протоплаз-матические астроциты (astrocyti protoplasmatici), локализующиеся в сером веществе ЦНС, и волокнистые астроциты (astrocyti fibrosi), присутствующие в белом веществе.

Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром. Волокнистые астроциты имеют 20-40 длинных, слабо ветвящихся отростков, в которых много фибрилл, состоящих из промежуточных филаментов диаметром

10 нм. В филаментах выявляется глиальный фибриллярный кислый белок. Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя их друг от друга (см. рис. 10.8, 10.12), а также к мягкой оболочке мозга, образуя пиоглиальную пограничную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности.

Олигодендроциты (oligodendrocyti имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки участвуют в образовании миелинового слоя в миелиновых нервных волокнах, причем в противоположность нейролеммо-цитам периферической нервной системы один олигодендроцит может участвовать в миелинизации нескольких аксонов (см. рис. 10.8, рис. 10.12).

Один отросток формирует миелиновый слой одного межузлового сегмента. Цитоплазма олигодендроцитов электронно-плотная, содержит много митохондрий, хорошо развитый комплекс Гольджи, цистерны гранулярной эндоплазматической сети, многочисленные микротрубочки.

10.3.2. Микроглия

Популяция микроглии неоднородна по происхождению. Около половины клеток микроглии представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки. Ее функция - защита от инфекции и повреждения и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид (см. рис. 10.8). В отличие от других клеток нейроглии, имеющих сферические ядра, ядра микро-глиоцитов продолговатые, с компактным хроматином. Описанное строение характерно для типичной (ветвистой, покоящейся) микроглии полностью сформированной ЦНС. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе ЦНС. В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии - амебоидная микроглия. Клетки амебоидной микро-глии формируют филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Клетки амебоидной микроглии отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не

вполне развит и вещества из крови легко попадают в ЦНС. Считают также, что она способствует удалению фрагментов клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков. Полагают, что, созревая, клетки амебоидной микроглии превращаются в ветвистые микроглиоциты.

Кроме глиальных макрофагов существуют микроглиальные клетки, которые относятся к «покоящимся астроцитам». Последние способны к пролиферации и дифференцировке в астроциты.

Реактивная микроглия появляется после травмы в любой области мозга. Клетки микроглии быстро размножаются и активируются, что проявляется фагоцитозом. При некоторых заболеваниях нервной системы также выявляется фагоцитарная активность микроглиоцитов (болезнь Альцгеймера, аутоиммунный энцефалит и др.). Активированный микроглиоцит не имеет ветвящихся отростков, как покоящаяся клетка, не имеет псевдоподий и филоподий, как клетки амебоидной микроглии. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы.

Глия периферической нервной системы (периферическая нейроглия) в отличие от макроглии ЦНС происходит из нервного гребня. К периферической нейроглии относятся нейролеммоциты (шванновские клетки) и ган-глионарные глиоциты (сателлитные глиоциты).

Нейролеммоциты (neurolemmocyti) формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы (см. рис. 10.9). Ганглионарные глиоциты (gliocyti ganglii) окружают тела нейронов в нервных узлах и участвуют в обмене веществ нейронов.

10.4. НЕРВНЫЕ ВОЛОКНА

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами (neurofibra). По строению оболочек различают миелиновые и безмиелиновые нервные волокна (рис. 10.13, А, Б). Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны.

В ЦНС оболочки аксонов и дендритов нейронов образуют олигодендро-глиоциты, а в периферической нервной системе - нейролеммоциты.

10.4.1. Безмиелиновые нервные волокна

Безмиелиновые нервные волокна (neurofibra amyelinata) находятся преимущественно в составе автономной нервной системы. В безмиелино-вых нервных волокнах отростки нервных клеток погружены в углубления на поверхности нейролеммоцитов. Погруженный в тело глиальной клет-

Рис. 10.13. Строение нервных волокон на светооптическом (А, Б) и ультрамикроскопическом (а, б) уровнях (по Т. Н. Радостиной, Ю. И. Афанасьеву, Л. С. Румянцевой): А, а - миелиновое волокно; Б, б - безмиелиновое волокно. 1 - осевые цилиндры; 2 - миелиновый слой; 3 - соединительная ткань; 4 - насечка миелина; 5 - ядро нейролеммоцита; 6 - узловой перехват; 7 - микротрубочки; 8 - нейрофиламенты; 9 - митохондрии; 10 - мезаксон; 11 - базальная мембрана

ки нервный отросток ограничен как собственной плазмолеммой, так и узким ободком цитоплазмы нейролеммоцита. В безмиелиновых нервных волокнах внутренних органов в цитоплазму одного нейролеммоцита могут погружаться несколько (10-20) осевых цилиндров, принадлежащих разным нейронам. Часто осевые цилиндры покидают одно волокно и переходят в смежное нервное волокно. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в ней-

ролеммоциты плазмолеммы последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки плазмолеммы нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр (см. рис. 10.13, Б, б).

10.4.2. Миелтновые нервные волокна

Миелиновые нервные волокна (neurofibra myelinata) встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 2 до 20 мкм. Они также состоят из осевого цилиндра, покрытого оболочкой из нейролеммоцитов (шванновских клеток), но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой (stratum myelini) (см. рис. 10.13, А, а) и наружный, тонкий, состоящий из цитоплазмы, ядер ней-ролеммоцитов и нейролеммы (neurolemma).

Миелиновый слой содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии - насечки миелина (incisura myelini), или насечки Шмидта-Лантермана. Через определенные интервалы (1-2 мм) видны участки волокна, лишенные мие-линового слоя, - узловые перехваты (nodus interruptionis myelini), или перехваты Ранвье.

При формировании миелинового нервного волокна осевой цилиндр не просто погружается в цитоплазму нейролеммоцита, а окружается спиральной слоистой оболочкой, образованной наматыванием мезаксона нейро-леммоцита при его вращении вокруг отростка нервной клетки. По мере вращения мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, образуя вокруг него плотную слоистую зону - миелиновый слой. На электронных микрофотографиях видны главные плотные и интраперио-дальные линии. Первые образуются от слияния цитоплазматических поверхностей плазмолеммы нейролеммоцита (или олигодендроглиоцита в ЦНС), вторые - от контакта экстрацеллюлярных поверхностей соседних слоев плазмолеммы нейролеммоцита (рис. 10.14). Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой. Осевой цилиндр в этом месте частично прикрыт интердигитирующими отростками нейро-леммоцитов. Аксолемма (оболочка аксона) обладает в области перехвата значительной электронной плотностью. Наличие большого числа митохондрий в этой области свидетельствует о высокой метаболической активности аксолеммы. Аксолемма перехвата имеет много потенциалзависимых Na+-каналов, необходимых для проведения нервного импульса. Следует отме-

тить, что ветвление аксонов происходит также в области перехватов.

Отрезок волокна между смежными перехватами называется межузловым сегментом. Длина межузлового сегмента, так же как и толщина мие-линового слоя, зависит от толщины осевого цилиндра. Насечка миелина представляет собой участок мие-линового слоя, где завитки мезак-сона лежат неплотно друг к другу, образуя спиральный туннель, идущий снаружи внутрь и заполненный цитоплазмой нейролеммоцита, т. е. место расслоения миелина. Снаружи от нейролеммоцита располагается базальная мембрана.

Миелиновые волокна ЦНС отличаются тем, что в них миелиновый слой формирует один из отростков олигодендроглиоцита. Остальные его отростки участвуют в образовании миелинового слоя других мие-линовых волокон (каждый в пределах одного межузлового сегмента) (см. рис. 10.12). Миелиновые волокна центральной нервной системы не имеют насечек миелина, а нервные волокна не окружены базаль-ными мембранами. Миелин в ЦНС содержит миелиновый щелочной белок и протеолипидный белок. Несколько демиелинизирующих болезней ЦНС человека связаны с недостатком или отсутствием одного или обоих белков.

Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/с, тогда как толстые миелиновые - со скоростью 5-120 м/с.

В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом - возникает только в области перехвата, что обеспечивается Na+-каналами. Таким образом, для миелино-вых волокон характерно сальтаторное проведение возбуждения, т. е. прыжками. Между перехватами идет электрический ток, скорость которого выше, чем прохождение волны деполяризации по аксолемме.

Рис. 10.14. Развитие и строение миелино-вого волокна (схема): а - поперечные срезы последовательных стадий развития миелинового волокна (по Робертсону); б - трехмерное изображение сформированного волокна (по М. Х. Россу, Л. Дж. Ромреллу). 1 - дупликация оболочки нейролеммоцита (мезаксон); 2 - аксон; 3 - насечка миелина; 4 - пальцевидные контакты нейролеммоцита в области перехвата; 5 - цитоплазма нейролеммоцита; 6 - спирально закрученный мезаксон; 7 - ядро нейролеммоцита

10.4.3. Реакция нейронов и их волокон на травму

Перерезка нервного волокна вызывает различные реакции в теле нейрона, в участке волокна между телом нейрона и местом перерезки (проксимальный сегмент) и в отрезке, расположенном дистальнее от места травмы и не связанном с телом нейрона (дистальный сегмент). Изменения в теле нейрона (перикарионе) выражаются в его набухании, тигролизе - растворении глыбок хроматофильного вещества и в перемещении ядра на периферию тела клетки. Дегенеративные изменения в центральном отрезке ограничиваются распадом миелинового слоя и осевого цилиндра вблизи травмы. В дистальном отрезке миелиновый слой и осевой цилиндр фраг-ментируются, и продукты распада удаляются макрофагами обычно в течение 1 нед (рис. 10.15).

Регенерация зависит от места травмы. Как в центральной, так и в периферической нервной системе погибшие нейроны не восстанавливаются. Полноценной регенерации нервных волокон в центральной нервной системе обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют. При этом нейролеммоциты периферического отрезка и ближайшего к области травмы участка центрального отрезка про-лиферируют и выстраиваются компактными тяжами. Конус роста аксона перемещается со скоростью 1-3 мм в сутки по поверхности нейролеммоцитов, отслаивая покрывающую клетки базальную мембрану. Нейролеммоциты стимулируют рост аксона, направление его роста к мишени.

Если существует препятствие для врастания аксонов центрального отрезка нерва в тяжи нейролеммоцитов периферического отрезка (обширная травма, воспалительный процесс, наличие рубца), аксоны центрального отрезка растут беспорядочно и могут образовать клубок, называемый ампутационной невромой. При ее раздражении возникает сильная боль, которая воспринимается как происходящая из первоначально иннервируе-мой области, например как боль в ампутированной конечности (фантомные боли). Способность нервных волокон к регенерации при сохранении перикариона используется в микрохирургии при сшивании дистального и проксимального отростков поврежденного нерва. Если это невозможно, то используют протезы (участок вены), куда вставляют концы поврежденного нерва.

Поврежденные нервные волокна головного и спинного мозга не регенерируют, исключение составляют аксоны нейросекреторных нейронов гипоталамуса. Регенерацию волокон в ЦНС можно вызвать в эксперименте, пересадив в нее периферический нерв. Возможно, регенерации нервных волокон в ЦНС не происходит потому, что глиоциты без базальной мембраны лишены хемотаксических факторов, необходимых для проведения регенерирующих аксонов. Однако при малых травмах ЦНС возможно частичное восстановление ее функций, обусловленное пластичностью нервной ткани.

Рис. 10.15. Регенерация нервного волокна после перерезки (по Р. В. Крстичу): а - нормальное нервное волокно (в теле нейрона видно хроматофильное вещество и ядро в центре); б, в - нервное волокно через 2 нед после его повреждения (в теле нейрона редуцируется хроматофильное вещество, ядро сдвигается на периферию, дистальная часть волокна дегенерирует, продукты распада фагоцитируются макрофагами); г - нервное волокно через 3 нед после перерезки (мышечное волокно атрофируется, нейролеммоциты пролиферируют, образуя тяжи, в которые внедряется растущий от центральной части аксон; количество хроматофильного вещества в перикарионе увеличивается); д - нервное волокно через 3 мес после его перерезки (восстанавливается структура нервного волокна, перикариона и мышечного волокна); е - нарушение роста аксона и образование соединительнотканного рубца. 1 - осевой цилиндр; 2 - перикарион (тело нейрона); 3 - фрагментация миелина и образование жировых капель; 4 - моторная бляшка; 5 - нейролеммоциты; 6 - микроглия (макрофаги); 7 - митозы шванновских клеток и формирование лент Бюнгнера; 8 - мышечное волокно; 9 - ампутационная неврома; Р - узловой перехват Ранвье

Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями (terminationis nervorum). Различают три группы нервных окончаний: концевые аппараты, образующие межнейрональные синапсы и осуществляющие связь нейронов между собой; эффекторные окончания (эффекторы), передающие нервный импульс на ткани рабочего органа; рецепторные (аффекторные, или чувствительные).

10.5.1. Синапсы

Синапсы (synapsis) - это специализированные межклеточные контакты, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Синапсы обеспечивают поляризацию проведения импульса по цепи нейронов, т. е. определяют направление проведения импульса. Если раздражать аксон электрическим током, импульс пойдет в обоих направлениях, но импульс, идущий в сторону тела нейрона и его дендритов, не может быть передан на другие нейроны. Только импульс, достигающий терминалей аксона, с помощью синапсов может передать возбуждение на другой нейрон, мышечную или железистую клетку. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими (электротоническими).

Рис. 10.16. Строение синапсов:

А - схема цитотопографии синапсов; Б - схема строения синапсов: а - тормозного типа; б - возбудительного типа; в - электрического (беспузырькового) типа

Межнейрональные синапсы

В зависимости от локализации окончаний терминальных веточек аксона первого нейрона различают аксодендритные, аксошипиковый, аксосомати-ческие и аксоаксональные синапсы (рис. 10.16).

Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ - нейромедиаторов, находящихся в синаптических пузырьках (см. рис. 10.16, в, г). Терминаль аксона представляет собой пресинаптическую часть, а область второго нейрона, или другой иннервируемой клетки, с которой она контактирует, - постсинап-тическую часть.

Рис. 10.16. Продолжение

В - схема строения синаптических пузырьков: а - холинергических (светлых); б - адренергических; в - пуринергических; г - пептидергических (по Л. Д. Маркиной); Г - электронная микрофотография аксодендритного синапса (препарат И. Г. Павловой). 1 - аксосоматический синапс; 2 - аксодендритные синапсы; 3 - аксоаксональный синапс; 4 - дендриты; 5 - дендритный шипик; 6 - аксон; 7 - синаптические пузырьки; 8 - пресинаптическая мембрана; 9 - постсинаптическая мембрана; 10 - синаптическая щель; 11 - постсинаптические уплотнения

В пресинаптической части находятся синаптические пузырьки, многочисленные митохондрии и отдельные нейрофиламенты. Форма и содержимое синаптических пузырьков связаны с функцией синапса. Например, округлые прозрачные пузырьки диаметром 30-50 нм присутствуют в синапсах, где передача импульса совершается с помощью ацетилхолина (холинерги-ческие синапсы). Холинергическими являются парасимпатические и пре-ганглионарные симпатические синапсы, аксомышечные синапсы (см. ниже) и некоторые синапсы ЦНС. В синапсах, в которых в качестве нейромедиа-тора используется норадреналин (адренергические синапсы), имеются синап-тические пузырьки диаметром 50-90 нм с электронно-плотной сердцевиной диаметром 15-25 нм. Норадреналин является медиатором постганглионар-ных симпатических синапсов. Ацетилхолин и норадреналин - наиболее распространенные медиаторы, но существует и множество других. Различают низкомолекулярные, т. е. с небольшой относительной молекулярной массой, нейромедиаторы (ацетилхолин, норадреналин, дофамин, глицин, гамма-аминомасляная кислота, серотонин, гистамин, глютамат) и нейропептиды: опиоидные (эндорфины, энкефалины), вещество Р и др. Дофамин, глицин и гамма-аминомасляная кислота являются медиаторами тормозящих синапсов. Вырабатывающиеся в головном мозге эндорфины и энкефалины являются ингибиторами восприятия боли. Однако большинство медиаторов и соответственно синапсов являются возбуждающими. Область синаптического контакта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

Пресинаптическая мембрана - это плазмолемма клетки, передающей импульс (аксолемма). В ней обнаруживаются участки утолщения - активные зоны, в которых происходит экзоцитоз нейромедиатора. Зоны расположены напротив скоплений рецепторов в постсинаптической мембране. Плазмолемма в активной зоне содержит потенциалзависимые Са2+-каналы. При деполяризации мембраны каналы открываются, что способствует экзо-цитозу нейромедиатора.

Синаптическая щель между пре- и постсинаптической мембранами имеет ширину 20-30 нм. Мембраны прочно прикреплены друг к другу в синапти-ческой области филаментами, пересекающими синаптическую щель.

Постсинаптическая мембрана - это участок плазмолеммы клетки, который содержит рецепторы нейромедиатора, ионные каналы. Здесь обнаруживаются постсинаптические уплотнения толщиной 20-70 нм в виде однородного электронно-плотного образования или отдельных телец округлой формы. Уплотнения состоят из филаментозно-гранулярной основы, которая объединяется с постсинаптическим цитоскелетом.

В целом процессы в синапсе происходят в следующем порядке: 1) волна деполяризации доходит до пресинаптической мембраны; 2) открываются кальциевые каналы, и Са2+ входит в терминаль; 3) вхождение Са2+ в терми-наль вызывает экзоцитоз нейромедиатора; при этом мембрана синаптиче-ских пузырьков входит в состав пресинаптической мембраны, а медиатор попадает в синаптическую щель; в дальнейшем мембраны синаптических пузырьков, вошедшие в состав пресинаптической мембраны, и часть медиа-

Рис. 10.17. Циклические изменения синаптических пузырьков в синапсе (по Г. Р. Нобаку, Н. Л. Стромингеру, Р. Дж. Демаресту):

I - нервное волокно; II - синапс; III - пресинаптическая часть. 1 - микротрубочки;

2 - миелиновая оболочка; 3 - формирование цистерн, из которых вновь образуются синаптические пузырьки; 4 - образование новых мембран синаптических пузырьков путем пиноцитоза (эндоцитоза) порций нейротрансмиттера; 5 - синаптическая щель; 6 - постсинаптическая мембрана; 7 - слияние мембраны синаптического пузырька с плазмолеммой и высвобождение нейротрансмиттера путем экзоцитоза в синаптическую щель; 8 - синаптические пузырьки; 9 - митохондрия

тора подвергаются эндоцитозу, и происходит рециркуляция синаптических пузырьков (рис. 10.17), а часть мембран и нейромедиатора с помощью ретроградного транспорта поступает в перикарион и разрушается лизосомами; 4) молекула нейромедиатора связывается с рецепторными участками на постсинаптической мембране, что вызывает 5) молекулярные изменения в постсинаптической мембране, приводящие к 6) открытию ионных каналов и 7) созданию постсинаптических потенциалов, обусловливающих реакции возбуждения или торможения; 8) удаление нейромедиатора из щели происходит за счет расщепления его ферментом и выведения путем захвата специфическим переносчиком.

Электрические, или электротонические, синапсы в нервной системе млекопитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевыми соединениями (контактами), обеспечивающими прохождение ионов из одной клетки в другую,

Рис. 10.18. Ультрамикроскопическое строение нейро-мышечного соединения (схема): 1 - цитоплазма нейролеммоцита; 2 - ядро нейролеммоцита; 3 - плазмолемма нейролеммоцита; 4 - осевой цилиндр нервного волокна; 5 - аксолемма; 6 - постсинап-тическая мембрана (сарколемма); 7 - митохондрии в аксоплазме; 8 - синаптическая щель; 9 - митохондрии в саркоплазме мышечного волокна; 10 - пресинаптические пузырьки; 11 - пресинаптическая мембрана (аксолемма); 12 - сарколемма; 13 - ядро мышечного волокна; 14 - миофибрилла

а следовательно, электрическое взаимодействие этих клеток. Эти синапсы способствуют синхронизации активности.

Синаптические структуры обладают высокой чувствительностью к действию токсических факторов, психотропных отравляющих веществ. Нарушения передачи нервных импульсов в области синапса (приобретенные или генетически обусловленные) лежат в основе развития ряда заболеваний нервной системы человека.

10.5.2. Эффекторные нервные окончания

Эффекторные нервные окончания бывают двух типов - двигательные и секреторные.

Двигательные нервные окончания - это концевые аппараты аксонов двигательных клеток соматической или автономной нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Двигательное окончание в поперечнополосатых мышцах называется нейро-мышечное соединение, или синапс (synapsis neuromuscularis). Нейро-мышечное соединение состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна (рис. 10.18). Миелиновое нервное волокно, приближаясь к мышечному волокну, теряет слой миелина и формирует специализированное нейро-мышечное оконча-

Рис. 10.19. Двигательные нервные окончания в гладкой мышечной ткани: 1 - тело (перикарион) мультиполярного нейрона; 2 - дендриты; 3 - аксон; 4 - утолщения с синаптическими пузырьками; 5 - синаптические пузырьки; 6 - гладкие миоциты

ние. Нейролеммоциты уплощаются, их базальная мембрана продолжается в базальную мембрану мышечного волокна. Плазмолемма терминальных ветвей аксона и сарколемма мышечного волокна разделены синаптической щелью шириной около 50 нм. Синаптическая щель заполнена аморфным веществом, богатым гликопротеинами. Сарколемма мышечного волокна образует многочисленные складки, формирующие вторичные синап-тические щели нейро-мышечного соединения. В этой области мышечное волокно не имеет типичной поперечной исчерченности и характеризуется обилием митохондрий, скоплением круглых или слегка овальных ядер. Саркоплазма с митохондриями и ядрами в совокупности образует постси-наптическую часть синапса.

Терминальные ветви нервного волокна в нейро-мышечном соединении характеризуются обилием митохондрий и многочисленными пресинаптиче-скими пузырьками, содержащими характерный для этого вида окончаний медиатор - ацетилхолин. При возбуждении ацетилхолин поступает через пресинаптическую мембрану в синаптическую щель на холинорецепторы постсинаптической (мышечной) мембраны, вызывая ее возбуждение (волну деполяризации).

Постсинаптическая мембрана нейро-мышечного синапса содержит фермент ацетилхолинэстеразу, разрушающий медиатор и ограничивающий этим срок его действия. Нарушения в нейро-мышечных соединениях вызывают развитие неизлечимого заболевания miastenia gravis, характеризующегося прогрессирующей мышечной слабостью и часто заканчивающегося параличом дыхательной мускулатуры (межреберных мышц и диафрагмы). При этом заболевании в крови циркулируют антитела против ацетилхолиновых рецепторов сарколеммы. Эти антитела связываются с холинорецепторами постсинаптической мембраны и инактивируют их, нарушая нейро-мышечное взаимодействие.

Двигательные нервные окончания в гладкой мышечной ткани представляют собой четкообразные утолщения нервного волокна, идущего среди гладких миоцитов (рис. 10.19). Утолщения содержат адренергические или холинергические пресинаптические пузырьки. Нейролеммоциты в области указанных утолщений часто отсутствуют.

Сходное строение имеют секреторные нервные окончания (нейрожелези-стые - terminatio neuroglandularis). Они представляют собой концевые утолщения терминалей или утолщения по ходу нервного волокна, содержащие пресинаптические пузырьки, главным образом холинергические.

10.5.3. Рецепторные нервные окончания

Эти нервные окончания - рецепторы - рассеяны по всему организму и воспринимают различные раздражения как из внешней среды, так и от внутренних органов. Соответственно выделяют две большие группы рецепторов: экстерорецепторы и интерорецепторы. К экстерорецепторам (внешним) относятся слуховые, зрительные, обонятельные, вкусовые и осязательные рецепторы. К интерорецепторам (внутренним) относятся висцерорецепторы (сигнализирующие о состоянии внутренних органов) и вестибулопроприо-рецепторы (рецепторы опорно-двигательного аппарата). В зависимости от специфичности раздражения, воспринимаемого данным видом рецептора, все чувствительные окончания делят на механорецепторы, барорецепторы, хеморецепторы, терморецепторы и др.

По строению чувствительные окончания подразделяют на свободные нервные окончания (terminatio nervi libera), которые представляют собой тонкие ветвления дендрита без глиальной оболочки, и несвободные, содержащие в своем составе все компоненты нервного волокна, а именно ветвления осевого цилиндра и клетки глии. Несвободные окончания, кроме того, могут быть покрыты соединительнотканной капсулой, и тогда они называются инкапсулированными (coipusculum nervosum capsulatum). Несвободные нервные окончания, не имеющие соединительнотканной капсулы, называются неинкапсулированными (corpusculum nervosum noncapsulatum) (рис. 10.20).

Свободные нервные окончания обычно воспринимают холод, тепло и боль. Такие окончания характерны для эпителия. В этом случае миелино-вые нервные волокна подходят к эпителиальному пласту, теряют миелин, а осевые цилиндры проникают в эпителий и распадаются там между клетками на тонкие терминальные ветви.

Очень разнообразны рецепторы в соединительной ткани. Огромное большинство их представляют собой разной степени сложности ветвления осевого цилиндра. В состав таких концевых аппаратов, как правило, входят нейролеммоциты, которые сопровождают все ветвления волокна (это несвободные неинкапсулированные рецепторы).

Инкапсулированные рецепторы соединительной ткани при всем их разнообразии всегда состоят из ветвления осевого цилиндра и глиальных клеток. Снаружи такие рецепторы покрыты соединительнотканной капсулой.

Рис. 10.20. Рецепторные нервные окончания (по Р. В. Крстичу, с изменениями): а - свободные нервные окончания (боль); б - тельце Мейсснера (прикосновение); в - колба Краузе (холод); г - тельце Фатера-Пачини (давление); д - тельце Руффини (тепло)

К чувствительным инкапсулированным окончаниям относятся осязательные тельца (corpusculum tactus) - тельца Мейснера. Это структуры овоидной формы, размерами 50-150X60 мкм. Они располагаются в верхушках соединительнотканных сосочков кожи. Осязательные тельца состоят из видоизмененных нейролеммоцитов - тактильных клеток, расположенных перпендикулярно длинной оси тельца. Части тактильных клеток, содержащие ядра, расположены на периферии, а уплощенные части, обращенные к центру, формируют пластинчатые отростки, интердигитирующие с отростками противоположной стороны (рис. 10.21). Тельце окружено тонкой капсулой. Миелиновое нервное волокно входит в основание тельца снизу, теряет миелиновый слой и формирует ветви, извивающиеся между тактильными клетками. Коллагеновые микрофибриллы и волокна связывают тактильные

Рис. 10.21. Осязательное тельце в соединительной ткани кожи (микрофотография). Импрегнация нитратом серебра

клетки с капсулой, а капсулу с базальным слоем эпидермиса, так что любое смещение эпидермиса передается на осязательное тельце.

У человека широко распространены пластинчатые тельца (corpusculum lamellosum - тельца Фатера-Пачини). Их размеры 0,5X1-2 мм. В центре такого тельца располагается внутренняя луковица, или колба (bulbus internus), образованная видоизмененными леммоцитами (рис. 10.22). Миелиновое чувствительное нервное волокно теряет около пластинчатого тельца миели-новый слой, проникает во внутреннюю луковицу и разветвляется. Снаружи тельце окружено слоистой капсулой, состоящей из фибробластов и спирально ориентированных волокон. Заполненные жидкостью пространства между пластинками содержат коллагеновые микрофибриллы. Давление на капсулу передается через заполненные жидкостью пространства между пластинками на внутреннюю луковицу и воспринимается безмиелиновыми волокнами во внутренней луковице. Пластинчатые тельца воспринимают давление и вибрацию. Они присутствуют в глубоких слоях дермы (особенно в коже пальцев), в брыжейке и внутренних органах.

К инкапсулированным нервным окончаниям относятся также рецепторы мышц и сухожилий: нейро-мышечные веретена (fusus neuromuscularis) и нейро-сухожильные веретена (fusus neurotendineus) (рис. 10.23).

Нервно-мышечные веретена являются сенсорными органами в скелетных мышцах, которые функционируют как рецепторы растяжения. Веретено состоит из нескольких исчерченных мышечных волокон, заключенных в растяжимую соединительнотканную капсулу, - интрафузальных волокон. Остальные волокна мышцы, лежащие за пределами капсулы, называются экстрафузальными. Капсула имеет слоистое строение. В ней различают наружные и внутренние слои. Между капсулой и интрафузальными волокнами имеется заполненное жидкостью пространство.

Рис. 10.22. Ультрамикроскопическое строение инкапсулированных нервных окончаний: а - пластинчатое тельце Фатера-Пачини : 1 - слоистая капсула: 2 - внутренняя луковица: 3 - дендрит чувствительной нервной клетки; 4 - спиральные коллагено-вые волокна; 5 - фиброциты; 6 - вторично чувствующие клетки с ресничками; 7 - синаптические контакты аксонов вторично чувствующих клеток с дендритами чувствительной нервной клетки (по А. А. Отелину, В. Р. Машанскому, А. С. Миркину); б - осязательное тельце Мейснера: 1 - капсула; 2 - специальные клетки; 3 - нервные терминали; 4 - миелиновое нервное волокно; 5 - опорные (поддерживающие) фибриллы; 6 - эпителий (по Р. В. Крстичу, с изменениями)

Рецепторной частью интрафузального мышечного волокна является центральная, несокращающаяся часть. Различают интрафузальные волокна двух типов: волокна с ядерной сумкой (bursa nuclearis) и волокна с ядерной цепочкой (vinculum nucleare). В веретене у человека содержится от 1 до 3 волокон с ядерной сумкой. В центральной расширенной находится много ядер. Волокон с ядерной цепочкой в веретене может насчитываться от 3 до 7. Они вдвое тоньше и вдвое короче, чем волокна с ядерной сумкой, и ядра в них расположены цепочкой по всей рецепторной области. К интрафузальным мышечным волокнам подходят афферентные волокна двух типов - первичные и вторичные. Первичные волокна диаметром 17 мкм образуют окончания в виде спирали - кольцеспиральные окончания (terminatio nervi annu -lospiralis) - как на волокнах с ядерной сумкой, так и на волокнах с ядерной цепочкой. Вторичные волокна диаметром 8 мкм иннервируют волокна с ядерной цепочкой. По обеим сторонам от кольцеспирального окончания они образуют гроздевидные окончания (terminatio nervi racemosa).

При расслаблении (или растяжении) мышцы увеличивается и длина ин-трафузальных волокон, что регистрируется рецепторами. Кольцеспиральные

Рис. 10.23. Строение нейро-мышечного веретена (схема):

а - моторная иннервация интрафузальных и экстрафузальных мышечных волокон (по А. Н. Студитскому); б - спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (по Р. В. Крстичу, с изменениями). 1 - нейро-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные коль-цеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв

окончания реагируют на изменение длины мышечного волокна и на скорость этого изменения, гроздевидные - реагируют только на изменение длины. При внезапном растяжении из кольцеспиральных окончаний в спинной мозг поступает сильный сигнал, вызывающий резкое сокращение мышцы, с которой поступил сигнал, - динамический рефлекс на растяжение. При медленном, длительном растяжении волокна возникает статический сигнал на растяжение, передаваемый как от кольцеспиральных, так и от гроздевидных рецепторов. Этот сигнал может поддерживать мышцу в состоянии сокращения в течение нескольких часов.

Рис. 10.24. Простая рефлекторная дуга (схема по В. Г. Елисееву, Ю. И. Афанасьеву, Е. Ф. Котовскому):

1 - чувствительная нервная клетка; 2 - дендрит чувствительной клетки; 3 - рецептор в коже; 4 - плазмолемма нейролеммоцита; 5 - ядра нейролеммоцитов; 6 - миелино-вый слой; 7 - узловой перехват нервного волокна; 8 - осевой цилиндр; 9 - насечка миелина; 10 - аксон чувствительной клетки; 11 - двигательная клетка (мотонейрон); 12 - дендриты двигательной клетки; 13 - аксон двигательной клетки; 14 - миелиновые волокна; 15 - эффектор на мышце; 16 - чувствительный узел; 17 - дорсальная ветвь спинномозгового нерва; 18 - задний корешок; 19 - задний рог; 20 - передний рог; 21 - передний корешок; 22 - вентральная ветвь спинномозгового нерва

Интрафузальные волокна имеют также эфферентную иннервацию. К ним подходят тонкие моторные волокна, оканчивающиеся аксомышеч-ными синапсами на концах мышечного волокна. Вызывая сокращение концевых участков интрафузального волокна, они усиливают растяжение его центральной рецепторной части, повышая реакцию рецептора.

Нейро-сухожильные веретена обычно располагаются в месте соединения мышцы с сухожилием. Пучки коллагеновых волокон сухожилия, связанные с 10-15 мышечными волокнами, окружены соединительнотканной капсулой. К нервно-сухожильному веретену подходит толстое (диаметром 16 мкм) миелиновое волокно, которое теряет миелин и образует термина-ли, ветвящиеся между пучками коллагеновых волокон сухожилия. Сигнал с нервно-сухожильных веретен, вызванный напряжением мышцы, возбуждает тормозные нейроны спинного мозга. Последние тормозят соответствующие мотонейроны, предотвращая перерастяжение мышцы.

10.6. ПОНЯТИЕ О РЕФЛЕКТОРНОЙ ДУГЕ

Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга. Рефлекторная дуга представляет собой цепь нейронов, связанных друг с другом синапсами и обеспечивающих проведение нервного импульса от рецептора чувствительного нейрона до эффекторного окончания в рабочем органе.

Самая простая рефлекторная дуга состоит из двух нейронов - чувствительного и моторного (рис. 10.24). В подавляющем большинстве случаев между чувствительными и моторными нейронами включены вставочные, или ассоциативные, нейроны. У высших животных рефлекторные дуги состоят обычно из многих нейронов и имеют значительно более сложное строение, чем на приведенном рисунке. Конкретные нервные связи будут рассмотрены на примере коры большого мозга и мозжечка.

Контрольные вопросы

1. Источники развития и классификация нейронов, ультраструктурная организация.

2. Клеточные диффероны нервной ткани.

3. Нейроглия: классификация, топография в составе нервной системы, функции.

4. Синапсы: строение, функции, классификация.

5. Рефлекторные дуги как морфологическая основа деятельности нервной ткани.

Гистология, эмбриология, цитология : учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.

LUXDETERMINATION 2010-2013