Глава 4. ИММУННЫЙ ОТВЕТ

Глава 4. ИММУННЫЙ ОТВЕТ

Механизмы врождённого иммунитета не всегда могут сдержать развитие инфекции. В таких случаях запускается адаптивный иммунный ответ. В отличие от врождённого иммунитета, реализуемого клетками, сформировавшимися в процессе онтогенеза независимо от контакта с патогенными микроорганизмами, адаптивный иммунный ответ развивается только в ответ на контакт с конкретным антигеном. При этом в иммунный ответ вовлекаются только клоны лимфоцитов, распознающие проникшие в организм чужеродные антигены. Эта специфическая адресная реакция называется иммунным ответом. Таким образом, иммунный ответ - многоэтапный процесс с обязательным участием лимфоцитов и других клеток иммунной системы.

Основные задачи иммунного ответа:

 распознавание лимфоцитами антигена в нативном состоянии (например, молекулы патогена) и представленного на поверхности модифицированных клеток (например, заражённых вирусами);

 деструкция патогена и повреждённых клеток;

 элиминация (выведение) продуктов деструкции из организма;

 формирование иммунной памяти.

В иммунном ответе выделяют индуктивную и эффекторную (продуктивную) фазы. В индуктивную фазу происходит презентация антигена, т.е. передача информации об антигене от клеток врождённого иммунитета (АПК) инициаторам адаптивного иммунитета - Т-хелперам. Затем выбирается путь дальнейшего развития иммунного ответа по клеточному или гуморальному пути: через индукцию дифференцировки разновидностей Т-хелперов (Th1, Th2, Th17 и других, см. главу 6). Наконец, при участии этих Т-хелперов происходит параллельная дифференцировка эффекторных клеток и клеток памяти. Эффекторная фаза иммунного ответа состоит в выполнении своих функций образовавшимися эффекторными клетками. Эта активность реализуется в форме клеточной или гуморальной иммунной защиты. В конце иммунного ответа благодаря включению регуляторных механизмов прогрессирование иммунных

Рис. 4-1. Основные события иммунного ответа

реакций замедляется и в результате приводит к их прекращению. Дифференцировавшиеся в процессе иммунного ответа клетки памяти активируются только при повторной встрече с антигеном - при вторичном иммунном ответе. Он протекает в принципе так же, как первичный, но развивается быстрее и реализуется значительно эффективнее первичного (рис. 4-1).

ПРИЗНАКИ АДАПТИВНОГО ИММУННОГО ОТВЕТА

 Клоны лимфоцитов. Лимфоциты - единственный тип клеток в организме, при дифференцировке которых происходит обязательная рекомбинация ДНК в генах, кодирующих антигенраспознающие рецепторы. Таким образом, в организме непрерывно генерируется беспрецедентное разнообразие клонов лимфоцитов, несущих антигенраспознающие рецепторы различной специфичности. У Т-лимфоцитов возможно 1018 вариантов специфичностей и 1016 вариантов у B-лимфоцитов.

 Связывание антигенраспознающего рецептора лимфоцита со специфичным лигандом необходимо, но ещё недостаточно для инициации иммунного ответа.

 Корецепторы. Помимо антигенраспознающего рецептора на мембране лимфоцитов есть инвариантные корецепторы, строго необходимые для развития иммунного ответа.

 Для инициации иммунного ответа лимфоциту необходимо получить сигналы по «двум каналам» - от рецепторов для антигена и от корецепторов.

 Дополнительные активирующие сигналы через корецепторы поступают в лимфоциты от АПК (ДК, макрофагов, покровного эпителия и др.).

 Клетки врождённого иммунитета не имеют большого разнообразия рецепторов. Их рецепторы инвариантны, консервативны, кодируются зародышевыми генами, но именно эти рецепторы первыми избирательно связывают продукты микроорганизмов, отсутствующие у макроорганизмов. Таким образом, именно рецепторы клеток врождённого иммунитета - «носители эволюционной памяти», именно они первыми отличают «чужое» от «своего» и информируют лимфоциты о факте проникновения «чужого» во внутреннюю

среду.

 При инициации иммунного ответа в лимфоидных органах лимфоцит распознаёт антиген и связывает лиганд и затем под влиянием стимулирующих и костимулирующих сигналов активируется и пролиферирует. В-лимфоцит додифференцируется в лимфоидных органах в плазматические клетки, вырабатывающие специфичные к антигену антитела. Антителообразование происходит в том же лимфоидном органе, либо плазматические клетки мигрируют в костный мозг, где происходят те же самые процессы. Сенсибилизированные Т-лимфоциты, как и В-лимфоциты, мигрируют в очаг поражения в ткани (выходят из крови), где разрушают инфицированные клетки, либо выделяют цитокины, вовлекающие в эту деструкцию макрофаги, эозинофилы, нормальные киллеры и другие лейкоциты.

ЭТАПЫ РАЗВИТИЯ ИММУННОГО ОТВЕТА

 Началом процесса служит проникновение антигена во внутреннюю среду организма. В природе это происходит при повреждении покровных тканей. При этом в них выделяются определённые вещества (стресс-протеины, белки теплового шока, цитокины кератиноцитов и клеток соединительной ткани) - медиаторы воспа-

ления, которые и «подготавливают почву» для развития адаптивного иммунного ответа (если это потребуется). Попадание антигена без значимого нарушения целостности покровов сразу во внутреннюю среду - событие редкое. Чаще это происходит при искусственных вмешательствах, например при парентеральном введении веществ.

 Врождённые защитные реакции на антигены направлены на предотвращение проникновения антигенов глубже покровных тканей. В первую очередь это сосудистые реакции: расширение сосудов микроциркуляторного русла, повышенный выпот из сосудов в ткани плазмы или сыворотки (соответственно, и всех сывороточных неспецифических противоинфекционных факторов) и экстравазация лейкоцитов (в первую очередь фагоцитов-нейтрофилов). Локальный отёк препятствует проникновению антигенов в системную циркуляцию.

- Проникший в покровы патоген поглощают ДК и/или макрофаги при помощи эндоцитоза (чаще всего - фагоцитоза). И те, и другие - профессиональные АПК, однако ДК обладают особыми свойствами и мигрируют из покровов (вместе с антигенами) в региональные лимфоидные органы. ДК процессируют антигены, проходят этапы созревания, экспрессируют на мембране комплексы пептидов с молекулами MHC-II и необходимые корецепторные молекулы, с помощью которых они могут эффективно взаимодействовать с T-лимфоцитами в T-зависимых зонах периферических лимфоидных органов.

- Кроме АПК в покровных тканях с антигенами контактируют внутриэпителиальные лимфоциты, среди которых много γδT-клеток, распознающих непептидные антигены без предварительной презентации АПК. Под покровными тканями в плевральной и брюшной полостях присутствуют B1-лимфоциты, продуцирующие антитела с широкой перекрёстной реактивностью, специфичные в основном к распространённым бактериальным антигенам и аутоантигенам.

- Не «перехваченный» в барьерных тканях антиген может поступить непосредственно в системную циркуляцию. Тем не менее иммунный ответ на него ещё может развиться, поскольку АПК (ДК и макрофаги) присутствуют и в синусоидах селезёнки, через которую проходит весь объём крови.

 В T-зависимых зонах лимфатических узлов ДК презентируют антигены (в комплексе с MHC-II) интенсивно рециркулирую-

щим T-лимфоцитам, как бы проверяя их специфичность. Среди T-клеток рано или поздно встретится лимфоцит, несущий рецептор, специфичный к данному антигену. Если при этом состоятся все необходимые и достаточные корецепторные взаимодействия с АПК, T-лимфоцит получит активационный сигнал, что и станет началом собственно антигенспецифичного иммунного ответа.

- Двойное распознавание - процесс распознавания фрагментов пептидного антигена, в комплексе с молекулами МНС-I (CD8+ ЦТЛ) или МНС-II (CD4+ Т-хелпером). При этом Т-лимфоциты инициируют иммунный ответ против чужеродного антигена, презентированного АПК в комплексе со «своими» молекулами MHC-II или против клеток собственного организма, несущих вирусные или изменённые свои пептиды в комплексе с MHC-I.

 Распознавший антиген T-лимфоцит начинает пролиферировать и дифференцироваться. В результате образуется клон дифференцированных антигенспецифичных T-лимфоцитов. Такие T-клетки называют лимфоцитами-эффекторами. В процессе дифференцировки T-лимфоциты экспрессируют в надлежащем количестве мембранные молекулы и секретируют цитокины, необходимые для взаимодействия с B-лимфоцитами, лейкоцитами или для атаки клеток-мишеней.

 В T-зависимых зонах периферических лимфоидных органов происходит взаимодействие активированных антигеном T-лимфоцитов с активированными антигеном B-лимфоцитами.

 Провзаимодействовавшие с антигеном и с T-клетками B-лимфоциты мигрируют в зону лимфоидного фолликула, где пролиферируют и дифференцируются в антителопродуценты - плазматические клетки.

- Часть плазматических клеток остается в лимфатическом узле. Секретируемые ими антитела в значительном количестве связываются рецепторами для Fc-фрагмента антител (FcR) ФДК и в таком виде способны в течение продолжительного времени удерживать антиген в лимфоидном фолликуле.

- Остальные плазматические клетки уходят из фолликулов лимфоидных органов и мигрируют преимущественно в костный мозг или слизистые оболочки, где и осуществляют массовое образование антител, секретируя их в кровь или во внешнюю среду.

 Активированные Т-лимфоциты (ЦТЛ, Th1, Th2) выходят из региональных лимфатических узлов через эфферентные лимфатические сосуды, попадают в системную циркуляцию, а оттуда - в очаг воспаления в месте проникновения или диссеминации патогена.

 Если T-лимфоциты в очаге воспаления находят и связывают специфичный антиген, они начинают усиленно синтезировать и секретировать эффекторные молекулы - цитотоксины (ЦТЛ), непосредственно вызывающие гибель клеток-мишеней, или цитокины (Th1 или Th2), вовлекающие в деструкцию антигена другие лейкоциты (макрофаги, эозинофилы, тучные клетки, базофилы, нейтрофилы), в том числе различные популяции лимфоцитов.

 В конечной фазе иммунного ответа связанный антиген подвергается фагоцитозу и последующему разрушению гидролитическими ферментами, кислородными радикалами и радикалами оксида азота до мелких метаболитов, выводимых из организма через почки и пищеварительный тракт.

 Если санация организма от патогена/антигена завершается успешно - первый результат достигнут. После этого в норме происходит остановка продуктивного иммунного ответа - так называемая супрессия.

 Второй результат адаптивной иммунной реакции - формирование иммунной памяти. По современным представлениям лимфоцитами иммунной памяти становится незначительная часть покоящихся лимфоцитов (вероятно, единицы процентов), экспрессирующих особые ингибирующие активацию молекулярные структуры.

На рис. 4-2 представлена временная динамика иммунного ответа в различных проявлениях и с разными результатами.

МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ КЛЕТОК В ХОДЕ ИММУННОГО ОТВЕТА

При развитии иммунного ответа разные клетки взаимодействуют друг с другом. Известны как минимум 2 механизма такого взаимодействия:

 межклеточная адгезия (контактное взаимодействие) - мембранные молекулы одной клетки комплементарно связываются с мембранными молекулами другой клетки, что приводит к образованию межклеточного контакта;

Рис. 4-2. Временная динамика проявлений адаптивной иммунной защиты при инфекции

• взаимодействие при помощи медиаторов - клетка секретирует особые растворимые молекулы (медиаторы), рецепторы к которым присутствуют на мембранах других клеток. При связывании рецептора с лигандом реализуется тот или иной биологический эффект. Медиаторы, участвующие в развитии иммунного ответа, называют цитокинами и хемокинами.

Молекулы межклеточной адгезии

К молекулам межклеточной адгезии относят селектины, адрессины, интегрины, молекулы суперсемейства иммуноглобулинов и ряд других.

• Селектины - трансмембранные белки на поверхности лимфоцитов, лейкоцитов, тромбоцитов и эндотелиоцитов. Общим для них является наличие во внеклеточной части лектиноподобного домена, способного комплементарно связывать сахара.

• Адрессины - муциноподобные молекулы на мембране эндотелиоцитов - лиганды для селектинов. Селектины и адрессины обеспечивают селективную адгезию клеток к стенке сосуда, необходимую для их экстравазации и дальнейшего проникновения в очаг поражения.

• Интегрины - гетеродимерные белки, состоящие из крупной а-цепи и меньшей по размеру в-цепи.

- LFA-1 (Lymphocyte Function-Associated antigen - антиген, ассоциированный с функцией лимфоцитов) - наиболее важный интегрин для активации любого T-лимфоцита. Антитела к LFA-1 способны блокировать активацию как наивных, так и покоящихся T-клеток. Однако анализ врождённых генетических дефектов молекул адгезии показывает, что другие интегрины (например, CD2) способны компенсировать отсутствие LFA-1.

- VLA (Very Late Activation antigens - очень поздние антигены активации). Эти интегрины экспрессируются T-лимфоцитами на 2-4-е сутки после активации и имеют наибольшее функциональное значение для проникновения уже стимулированной T-клетки в очаг воспаления, где ей надлежит организовать элиминацию антигена.

• ICAM (InterCellular Adhesion Molecules - молекулы межклеточной адгезии) относят к суперсемейству иммуноглобулинов.

- Взаимодействие молекул адгезии LFA-3 и ICAM-1 на клетках эпителия тимуса с комплементарными им молекулами CD2 и LFA-1 на тимоцитах необходимо для удержания последних в тимусе в процессе их дифференцировки.

- Наивные T-лимфоциты в T-зависимых зонах периферических лимфоидных органов взаимодействуют с АПК при помощи LFA-1, CD2 и ICAM-3 на T-клетках и ICAM-1, ICAM-2, LFA-1 и LFA-3 на АПК. Этого взаимодействия достаточно для запуска пролиферации распознавших антиген T-лимфоцитов и дифференцировки их в лимфоциты-эффекторы.

Данные по отдельным молекулам адгезии приведены в табл. 4-1.

Цитокины

Взаимодействия, опосредованные цитокинами, более динамичны и оперативны, чем адгезивные. Для цитокинов характерны общие свойства.

 Разные типы клеток могут продуцировать одинаковые цитокины и экспрессировать рецепторы для них.

 Действие цитокинов избыточно. С одной стороны, разные цитокины могут вызывать внешне одинаковые реакции клеток, с другой - каждый цитокин индуцирует в разных клетках разные биологические эффекты.

 В подавляющем большинстве случаев цитокины - близкодействующие медиаторы, обусловливающие локальные взаимодействия клеток в очагах развития процессов в тканях.

- В зависимости от клетки-мишени выделяют аутокринные эффекты (действуют на саму клетку, секретировавшую цитокин) и паракринные эффекты (действуют на другие рядом расположенные клетки) цитокинов.

- Эндокринные (дистантные, или системные) эффекты проявляются, когда цитокин достигает клетки-мишени, циркулируя с кровью. У здоровых людей в крови обычно удаётся обнаружить множество разных цитокинов, включая интерфероны, но в концентрациях, не превышающих несколько пикограмм (10-12 г) в 1 мл. Системное действие выявлено в основном для четырёх цитокинов: ФНОа, ИЛ-1, ИЛ-6 и M-CSF, например при тяжёлой патологии типа септического шока, и опосредовано через гипоталамус и печень.

 Большинство цитокинов не депонируются в клетках, а синтезируются импульсно - «по запросу». Этот процесс начинается с транскрипции мРНК с соответствующего гена цитокина. Тем не менее небольшие количества ФНОα или других цитокинов могут депонироваться в гранулах нейтрофилов, тромбоцитов и тучных клеток.

 Матричная РНК цитокинов очень короткоживущая, что объясняет транзиторный характер их продукции клеткой: они вырабатываются непродолжительное время после получения «запроса» на их образование.

 Для действия цитокинов характерна каскадность, выражающаяся в том, что под влиянием одного цитокина клетка может начать вырабатывать другие цитокины (или тот же самый). Это приводит к усилению биологических эффектов.

Каскад цитокинов саморегулируется: клетка, начавшая продуцировать активационные цитокины, через несколько часов или суток переключается на синтез супрессорных цитокинов и/или экспрессирует ингибиторные рецепторы либо рецепторы для сигналов к апоптозу.

По функциональному назначению выделяют 5 основных групп цитокинов (подробнее см. табл. 4-2).

Группа 1. Гемопоэтические цитокины регулируют пролиферацию и дифференцировку всех клеток кроветворной системы. К ним относят колониестимулирующие факторы - CSF (Colony Stimulating Factors): GM-CSF, M-CSF, G-CSF, эритропоэтин, тромбопоэтин, ИЛ-3 (мульти-CSF), ИЛ-5 (CSF для эозинофилов), ИЛ-7 (CSF для лимфоцитов), фактор стволовых клеток - SCF (Stem Cell Factor, его второе название «c-kit-лиганд»). К гемопоэтинам относят и ИЛ-1а под вторым названием - гемопоэтин-1, так как он поддерживает рост самых ранних клеток-предшественников кроветворения. Негативные регуляторы гемопоэза - ФНОа и трансформирующий фактор роста β (ТФРβ). Хемокин MIPα ингибирует ранние клетки-предшественники гемопоэза.

В процессе гемопоэза цитокины выступают в качестве факторов выживания и роста дифференцирующихся клеток-предшественников и их потомков, но не являются дифференцировочными факторами. Один и тот же цитокин может действовать на разных уровнях и в разных рядах дифференцировки. В миелоидном ряду проявляется правило, согласно которому влияние цитокинов (например, ИЛ-3, GM-CSF), действующих на ранних этапах развития клеток, сохраняется на поздних этапах развития, когда к «ранним» цитокинам присоединяются более специализированные факторы (такие, как G-CSF, M-CSF). В лимфоидном ряду первоначальное преобладание эффекта SCF постепенно замещается универсальным действием ИЛ-7, а на поздних этапах доминирующими наряду с ИЛ-7 становятся линейно-специфические факторы. На рис. 4-3 цитокины, контролирующие рост и выживание гемопоэтических клеток, показаны около стрелок, указывающих направление дифференцировки клеток-предшественников. Подробнее о функциях ИЛ-15, BAFF и Flt3L см. в табл. 4-2.

Группа 2. Первичные провоспалительные цитокины (цитокины врождённого иммунитета) - ИЛ-1а, ИЛ-1в, ФНОа и ИЛ-6. Они чрезвычайно плейотропны и действуют на клетки близлежащих тканей. Их продуцируют главным образом макрофаги и ДК покровных структур в очаге внедрения патогена. ИЛ-1 и ФНОа действуют преимущественно

Рис. 4-3. Цитокиновый контроль гемопоэза. Обозначения: Бф - базофил; Эо - эозинофил; Нф - нейтрофил; Мон - моноцит; МФ - макрофаг; ТК - тучная клетка; ЛАК - лимфокин-активированный киллер; Вакт, Такт - активированные формы В- и Т-клеток соответственно; GM-предшественник - предшественник нейтрофильных гранулоцитов, моноцитов/макрофагов и ДК; пре-G - предшественник нейтрофильных гранулоцитов; пре-М - предшественник моноцитов/макрофагов; L-предшественник - предшественник лимфоцитов; Flt3L - Fms-like tyrosinekinase

локально (если нет септического заражения крови), а ИЛ-6 индуцирует биосинтез белков острой фазы в печени.

Группа 3. Иммунорегуляторные цитокины регулируют пролиферацию и дифференцировку T- и B-лимфоцитов и NK-клеток в периферических лимфоидных органах и тканях. В первую очередь их продуцируют активированные профессиональные АПК (макрофаги и ДК) и сами лимфоциты. К этой группе относят ИЛ-2 (митоген для лимфоцитов), ИЛ-4, ИЛ-12, ИЛ-15, ИФНγ.

Группа 4. Цитокины - медиаторы воспаления являются продуктами активированных T-лимфоцитов и вызывают активацию лейкоцитов «общевоспалительного назначения»: ИФНγ (активатор макрофагов и NK-клеток), ИЛ-5 (стимулирует пролиферацию В-лимфоцитов, а также индуцирует и активирует эозинофилы); лимфотоксины (активаторы нейтрофилов), в частности лимфотоксин-α (ФНОβ, по новой номенклатуре LTα), обеспечивающий образование воспалительных гранулем in vivo.

Группа 5. Противовоспалительные (иммуносупрессорные) цитоки-

ны. К ним относят ИЛ-10 (продуцируемый макрофагами и ингибирующий макрофаги) и ТФРβ (продуцируемый активированными CD4+ T-лимфоцитами и ингибирующий дальнейшую пролиферацию лимфоцитов). Кроме того, ИЛ-4 и ИЛ-13 - цитокины, ингибирующие макрофаги, а также в некоторых процессах выступающие в качестве противовоспалительных.

В табл. 4-2 приведена краткая характеристика некоторых цитокинов.

Хемокины

Среди цитокинов особое значение для иммуногенеза и модуляции воспаления имеют хемокины - небольшие (66-76 аминокислотных остатков) секреторные белки, регулирующие миграцию лейкоцитов. Кроме того, большинство хемокинов поддерживает ангиогенез и продукцию коллагенов клетками соединительной ткани - регенерацию. В настоящее время известно не менее 50 хемокинов, в том числе многие факторы хемотаксиса моноцитов и ИЛ-8. Считают, что при определённых условиях любая клетка организма продуцирует те или иные хемокины. Эти молекулы способны связываться не только со своими лигандами на мембране клетки-мишени, но и с молекулами межклеточного матрикса, создавая в нём градиент концентрации по мере приближения к клетке-продуценту хемокина.

Эти хемоаттрактанты имеют структурное сходство, в том числе в расположении остатков цистеина, образующих дисульфидные мостики. На основании расположения первых двух цистеиновых остатков выделяют 4 семейства хемокинов: CC, CXC, C и CX3C.

В табл. 4-3 приведена краткая характеристика некоторых известных на сегодняшний день хемокинов.

Рецепторы для цитокинов и хемокинов

Выделяют несколько семейств рецепторов для цитокинов (рис. 4-4).

 Семейство рецепторов гемопоэтических цитокинов представлено гетеродимерными молекулами и включает рецепторы для ИЛ-3, ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-7, ИЛ-9 и ИЛ-15; рецептор для GM-CSF; рецептор для эритропоэтина; рецептор для гормона роста. Рецептор для ИЛ-2 существует в трёх формах, различающихся по составу субъединиц, а также по аффинности к ИЛ-2. Тример ИЛ-2Rαβγ обладает наибольшей аффинностью, димер ИЛ-2Rβγ - промежуточной и мономер ИЛ-2Rα - наименьшей (рис. 4-5).

 Семейство рецепторов интерферонов - гомодимерные трансмембранные молекулы. Помимо собственно рецепторов для интерферонов в семейство входит рецептор для ИЛ-10.

 Семейство рецепторов фактора некроза опухоли (TNFR - Tumor Necrosis Factor Receptor) включает молекулы, состоящие из одной трансмембранной полипептидной цепи: TNFR-I и TNFR-II, CD40, Fas (CD95), CD30, CD27, рецептор для фактора роста нервов (NGFR).

Путь проведения сигналов от рецепторов цитокинов (рис. 4-6) - самый короткий из известных, что соответствует физиологическим особенностям эффектов цитокинов (очень быстрые, но непродолжительные).

 Как правило, связывание цитокина с рецептором приводит к его диили тримеризации. Это вызывает конформационные из-

Рис. 4-4. Основные типы цитокиновых рецепторов. Обозначения аминокислотных остатков: С - цистеин, W - триптофан, S - серин, Х - любой остаток

Рис. 4-5. Общие полипептидные цепи цитокиновых рецепторов

Рис. 4-6. Проведение сигналов от рецепторов для цитокинов (схема). Пояснения см. в тексте

менения, передающиеся связанным с полипептидными цепями рецептора тирозинкиназам семейства Janus, способными фосфорилировать их по остатку тирозина. Известно 4 члена этого семейства: Jak1, Jak2, Jak3, Tyk-2. • К фосфорилированным участкам рецептора могут присоединяться молекулы из семейства STAT (Signal Transducers and Activators of Transcription) - проводники сигналов и активаторы транскрипции. Описано 7 молекул STAT: STAT1, STAT2, STAT3, STAT4, STAT5а, STAT5b, STAT6.

- Те же киназы Janus (присоединившиеся к рецептору) фосфорилируют молекулы STAT по остатку тирозина в N-концевом домене.

- Фосфорилированные STAT отделяются от внутриклеточной части рецептора, образуют гомоили гетеродимеры и мигрируют в ядро, где связываются с ДНК и активируют транскрипцию.

Рецепторы для хемокинов принадлежат к семейству интегральных мембранных белков, содержащих семь спиральных доменов, семикратно пронизывающих клеточную мембрану; в это семейство входят также рецепторы для анафилатоксинов комплемента (C5a, C3a, C4a), фоторецепторы (родопсин и бактериородопсин) и множество других. Рецепторы этого семейства передают сигнал внутрь клетки через G-белки (ГТФ/ ГДФ-связывающие белки).

Каждый G-белок состоит из трёх пептидных цепей - Gα,Gβ иGγ. В покое Gα-цепь образует комплекс с ГДФ. При связывании рецептора с лигандом ГДФ замещается на ГТФ и Gα-цепь диссоциирует от димера Gβ/Gγ (рис. 4-7).

Рис. 4-7. Белок G: 1 - выключенное состояние: α-субъединица связана с гуанозиндифосфатом (ГДФ) и не контактирует с эффектором; 2 - при взаимодействии лиганда с рецептором ГДФ заменяется на ГТФ, G-белок активируется; 3 - G-белок диссоциирует, несущая ГТФ α-субъединица перемещается в мембране, связывается с эффектором и активирует его; 4 - α-субъединица превращает ГТФ в ГДФ, инактивируется и объединяется с другими субъединицами G-белка

Рис. 4-8. Проведение сигналов с рецепторов семейства тетраспанинов. Роль инозиттрифосфата и диацилглицерина в реализации действия лигандов на клеткумишень. Образование комплекса лиганда-рецептор стимулирует G-белок, активирующий фосфолипазу С. Фосфолипаза С катализирует расщепление фосфатидил инозит-4,5-бифосфата (PIP2) на инозит-1,4,5-трифосфат (IP3) и диацилглицерин (DAG). Инозиттрифосфат (IP3) вызывает высвобождение Ca2+ из внутриклеточных депо. Ca2+-зависимая протеинкиназа С, активированная диацилглицерином (DAG), фосфорилирует белки клетки

 Ga-цепи различных G-белков имеют разные функции: одни активируют фосфолипазу Сγ, другие - аденилатциклазу, катализирующую образование циклического аденозинмонофосфата (цАМФ). Это приводит к разнообразным физиологическим эффектам, реализуемым посредством изменения режима функционирования ионных каналов, активации или блокирования разных биохимических реакций (рис. 4-8).

 Кроме того, Gα-цепь обладает ГТФазной активностью, что позволяет ей вновь объединиться с другими субъединицами G-белка и прекратить проведение сигнала.

ИММУННАЯ ПАМЯТЬ

Феномен иммунной памяти проявляется в том, что в случае успешной реализации иммунного ответа на патоген при его повторных попаданиях в организм санация осуществляется существенно быстрее и эффективнее, а патоген не успевает вызвать патологический инфекционный процесс. Это состояние известно как протективный иммунитет, т.е. иммунитет, защищающий от заболевания.

В основе феномена иммунной памяти лежит следующий факт: часть лимфоцитов (единицы процентов) антигенспецифичного клона, вовлечённого в первый иммунный ответ, «замораживается» и циркулирует в организме в течение неопределённого времени (для разных антигенов время очень различается - вплоть до продолжительности жизни всего организма).

В настоящее время неизвестно, какие именно молекулы и взаимодействия и на каком точно этапе иммуногенеза определяют формирование популяции лимфоцитов памяти. В то же время установлены различия лимфоцитов памяти от других субпопуляций тех же лимфоцитов.

 B-лимфоциты. B-лимфоциты памяти отличаются от плазматических клеток (терминальной стадии дифференцировки В-лимфоцитов) по ряду признаков.

- B-лимфоциты памяти несут поверхностные иммуноглобулины, экспрессируют молекулы MHC-II; способны к пролиферации, переключению изотипов иммуноглобулинов, гипермутированию гипервариабельных участков молекулы иммуноглобулина - CDR (Complementarity Determining Region), расположенных в V-домене (см. главу 5), но не способны к интенсивному образованию иммуноглобулинов. B-лимфоциты памяти находятся в покоящемся (неактивированном) состоянии.

- Плазматические клетки, напротив, способны к интенсивному синтезу/секреции иммуноглобулинов, но не несут поверхностные иммуноглобулины, не экспрессируют молекулы MHC-II; не способны к пролиферации, переключению между изотипами иммуноглобулинов, гипермутированию CDR V-доменов иммуноглобулинов.

 T-лимфоциты памяти отличаются от зрелых T-клеток и по частоте встречаемости антигенспецифичных клонов в лимфоидной ткани, и по экспрессии ряда мембранных молекул [LFA-3 (CD58); CD2; LFA-1 (CD11a/CD18); CD44; CD45RO] более чем в 10-100 раз. В отличие от наивных лимфоцитов, Т-клетки памяти испытывают

существенно меньшую потребность в медиаторах воспаления и в костимулирующих сигналах для запуска иммунного ответа на специфический антиген и могут отвечать при минимальных симптомах воспаления или даже при их отсутствии. В то же время наивные T-клетки, в отличие от T-лимфоцитов памяти, экспрессируют на поверхности CD45RA и большие количества молекул L-селектина, обеспечивающие хоминг Т-лимфоцитов в лимфатические узлы.

Вакцины

Целью вакцинации является индукция образования клеток памяти, специфичных к возбудителю. Это достигается посредством активации врождённого иммунитета и клонов В- и/или Т-клеточного звена адаптивного иммунитета. Основные проблемы вакцинации состоят в обеспечении безвредности вакцинного препарата при сохранении его иммуногенности. Тенденция заменить природные препараты антигенов (убитые, ослабленные патогены, экстракты активных субстанций) синтетическими препаратами или кодирующими их генами наталкивается на проблемы, связанные с недостаточной силой иммунного сигнала. Разновидности вакцин представлены на рис. 4-9.

Рис. 4-9. Разновидности вакцин

LUXDETERMINATION 2010-2013