Оглавление

Руководство к практическим занятиям по гигиене труда : учебное пособие для вузов / Под ред. В.Ф. Кириллова. - 2008. - 416 с. : ил.
Руководство к практическим занятиям по гигиене труда : учебное пособие для вузов / Под ред. В.Ф. Кириллова. - 2008. - 416 с. : ил.
ГЛАВА 2 ФИЗИОЛОГИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ ТРУДОВЫХ ПРОЦЕССОВ

ГЛАВА 2 ФИЗИОЛОГИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ ТРУДОВЫХ ПРОЦЕССОВ

2.1. ОСНОВНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ И ПРОВЕДЕНИЯ ФИЗИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

В процессе труда на человека могут воздействовать химические, физические, биологические и психофизиологические вредные производственные факторы. Согласно «Руководству по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» (Р 2.2.2006-05), последние называются также факторами производственного процесса (в отличие от факторов производственной среды).

Основной целью физиологических исследований является оценка факторов производственного процесса: тяжести и напряженности труда. Кроме того, они проводятся при определении функциональных сдвигов в органах и системах организма работающих в процессе труда для оценки уровня работоспособности в динамике рабочего дня, степени утомления, а также при разработке рациональных режимов труда и внутрисменного отдыха.

После ознакомления с производственным участком, цехом и получения общих сведений о технологическом процессе подбирается группа работающих для проведения физиологических исследований. Для получения достоверных данных эта группа должна быть достаточной в количественном отношении (10-12 человек). Выбранные лица должны составлять однородную группу испытуемых - быть практически здоровыми, одного пола, иметь стаж работы на данном рабочем месте не менее трех лет. Желательно не включать в группу лиц, которые проработали после отпуска меньше месяца.

Исследования проводятся не менее 2 нед. Если работы осуществляются на открытом воздухе, то исследования необходимо проводить как минимум дважды в год - в теплый и холодный периоды.

Кратность исследований в течение рабочей смены должна соответствовать периодам работоспособности (врабатывание, устойчи-

вая высокая работоспособность, утомление), т.е. изучаемые физиологические функции следует определять не менее пяти раз:

1) в первые 10-30 мин рабочей смены;

2) через 2-3 ч работы;

3) перед обеденным перерывом;

4) через 10-20 мин после него;

5) за 20-30 мин до окончания рабочего дня.

Если же по условиям производства 5-кратные исследования проводить невозможно, то следует ограничиться первыми двумя и последним исследованиями.

Очень важным является правильный выбор методик, используемых для исследований. Если методика исследования связана с отрывом рабочего от трудового процесса, то одновременно следует использовать не более 2-3 методик, причем время, затрачиваемое на каждую из них, не должно превышать 2-3 мин.

Таким образом, одноразовое отвлечение рабочего будет занимать 5-7 мин. Если по условиям исследования нужно применять большее число методик, то можно чередовать их по дням.

При выборе методик исследования той или иной функции организма необходимо руководствоваться определенными требованиями: методики должны быть достаточно информативными, простыми в выполнении, минимально отвлекать исследуемого от работы.

Перед проведением исследований целесообразны инструктаж или тренировка рабочих по тестам с обязательным объяснением им цели и смысла предстоящих наблюдений.

В основном физиологические методики применяются для изучения центральной нервной, сердечно-сосудистой, дыхательной (внешнее дыхание), нервно-мышечной (двигательного аппарата) систем, а также анализаторов (зрительного, слухового, кожного, обонятель- ного).

Методики, используемые в физиологии труда, могут быть условно разделены на две основные группы:

1) общие, которые можно применять при исследовании любого трудового процесса;

2) специфические, позволяющие выявить особенности влияния на организм определенных видов труда.

При разработке программы физиологических исследований в каждом конкретном случае выбор методик (тестов) определяется наибольшей их адекватностью сдвигам, которые ожидаются в

организме рабочих при выполнении работы. Принято исследовать не менее трех функциональных систем, например центральную нервную, сердечно-сосудистую и нервно-мышечную или сердечнососудистую, дыхательную, функцию анализаторов.

Оценка показателей может проводиться либо по их абсолютным величинам (частота сердечных сокращений, артериальное давление, энерготраты), либо по относительным значениям, выраженным в процентах по отношению к исходному уровню, принятому за 100 (мышечная сила, выносливость, латентные периоды слухо-зрительно-моторных реакций).

Желательно дополнить физиологические исследования социологическими: провести анкетирование среди рабочих с целью выяснения их отношения к работе, существующему режиму труда и внутрисменного отдыха, условиям труда, а также с целью выявления лиц, предъявляющих жалобы на усталость, утомление, плохое самочувствие в период работы и т.д.

Обязательным компонентом физиологических исследований является хронометраж трудового процесса, рабочих операций в тече- ние смены.

После окончания исследований полученные результаты подвергают статистической обработке с установлением средней величины показателя (М), ошибки средней (m) и достоверности разницы пока- зателей (t).

В итоге физиологического исследования определяют тяжесть и напряженность труда, динамику работоспособности и формулируют соответствующие рекомендации по оптимизации труда, внутрисменного отдыха рабочих изучаемых профессий и т.д.

Длительность перерыва в физиологических исследованиях до и после внедрения рекомендованного режима труда и отдыха должна быть достаточно продолжительной - не менее 3 мес. 3а этот период у рабочих вырабатывается новый динамический производственный стереотип, только при закреплении которого и может быть выявлен физиологический и экономический эффект.

2.2. ХРОНОМЕТРАЖ РАБОЧЕГО ДНЯ

Если результаты физиологических исследований функционального состояния органов и систем могут быть дополнены хронометраж- ными данными, они получают особую ценность. Метод хронометра-

жа, т.е. установление длительности выполнения отдельных рабочих операций, позволяет выявить изменения работоспособности. Так, постепенное увеличение времени, затрачиваемого на определенную операцию, может свидетельствовать о наступлении утомления.

Примечание. Загруженность рабочего дня считается малой, если сумма времени, затрачиваемого на рабочие операции, подсобные работы и производственные отвлечения, занимает менее 75% от общего времени рабочей смены, достаточной - 75-85%, интенсивной - 86-95%, очень интенсивной - превышает 95%.

Метод хронометражных наблюдений используют для оценки трудового процесса (режим труда, ритм работы, темп выполнения отдельных операций), выявления возможного влияния условий труда на функциональное состояние организма, решения вопросов научной организации труда (НОТ).

Перед проведением наблюдений необходимо ознакомиться с процессом труда, характером подлежащих учету рабочих операций или их элементов, особенностями условий труда. Составляется примерная схема последовательности изучаемых операций, для чего следует правильно расчленить изучаемый трудовой процесс на отдельные операции или их элементы.

Хронометраж ведут при помощи секундомера по текущему времени, т.е. не останавливая стрелку, а лишь отмечая время окончания каждого элемента рабочего процесса, каждой операции по указанному ниже протоколу.

Метод хронометража позволяет получить следующие данные:

1) среднюю продолжительность отдельных операций в течение рабочего дня, выявляя зависимость ее от времени смены, режима труда, ритма работы;

2) время, затрачиваемое на выполнение основных и подсобных (вспомогательных) операций, простои и ремонт оборудования, исправление брака, ожидание материала, личные и производственные отвлечения, что характеризует условия и организацию труда;

3) загруженность рабочего дня.

Результаты хронометража могут быть выражены в виде таблицы или графической форме.

2.3. МЕТОДЫ ИССЛЕДОВАНИЯ НЕРВНО-МЫШЕЧНОГО АППАРАТА

В практике гигиенических исследований для изучения работоспособности и утомления нервно-мышечного аппарата (НМА) наибо- лее часто используются динамометрия, треморометрия и электромиография.

Динамометрия представляет собой определение основных показателей произвольной дееспособности отдельных мышечных групп. К ним относятся максимальная произвольная сила (МПС), выносливость к статическим напряжениям и интегральный показатель - максимальная мышечная работоспособность.

Сила мышцы определяется наибольшим напряжением, которое она может развить. Основными измерительными приборами при этом являются различные виды динамометров: кистевые гидравлический и механический динамометры, ножной динамометр для измерения силы мышц разгибателей спины. При измерении силы обследуемый осуществляет максимальное воздействие (плавно, без рывков) на соответствующее устройство динамометра. Достигнутая максимальная сила должна быть зафиксирована на 1-2 с.

Выносливость к статическому напряжению определяется по дли- тельности периода, в течение которого обследуемый удерживает усилие, равное 75% от МПС.

При измерении выносливости исследователь просит поддерживать заданное усилие максимально долго до отказа. Как только обследуемый достигает необходимого уровня усилия, исследователь включает секундомер и останавливает его в момент отказа поддерживать усилие. Срок удержания усилия (в секундах) и есть показатель статической выносливости.

Максимальная мышечная работоспособность (ММР) определяется на основании двух измеренных динамометрических показателей как произведение заданной силы на время ее удержания.

При снижении работоспособности, развитии утомления динамометрические показатели, как правило, снижаются. Величина сни- жения статической выносливости является одним из показателей степени физического утомления при труде. Оптимальным в процессе обычного рабочего дня является снижение выносливости на 5-10%, предельно допускаемым - на 20%. Превышение этого уровня указывает на развитие выраженного утомления НМА и служит основанием для проведения мероприятий по снижению трудовой нагрузки путем механизации и автоматизации трудовых операций, изменения норм труда (норм выработки, времени активной работы, численности рабочих и т.д.), рационализации режимов труда и отдыха.

Треморометрия представляет собой регистрацию постоянных, непроизвольных мелких колебаний кисти и осуществляется с помощью специального прибора - тремометра. Анализ треморометрии проводится по амплитуде и частоте колебаний. В используемом в практике гигиенических исследований электротремометре амплитуда отражается числом касаний краев фигурных пазов. При проведении измерений исследователь записывает показание счетчика электротремометра и включает его. По команде исследователя (при

этом он запускает секундомер) обследуемый металлической указкой проводит через все фигурные пазы. После выполнения задания секундомер останавливается и вновь регистрируется показание счетчика. Разность в показаниях счетчика указывает количество касаний указкой краев пазов. Делением значения общего числа касаний на время выполнения теста определяется частота - количество касаний в 1 с.

При развитии утомления тремор усиливается, однако при трактовке результатов исследования необходимо учитывать влияние степени скоординированности совместной деятельности зрительного и двигательного анализаторов.

Электромиография (ЭМГ), т.е. регистрация биоэлектрической активности мышц, является одной из наиболее адекватных методик, позволяющих объективно оценить функциональное состояние НМА. В зависимости от характера отведения различают суммарную ЭМГ (отводится с помощью накожных электродов) и ЭМГ отдельных двигательных единиц (отведение осуществляется с помощью игольчатых электродов). В гигиенических исследованиях используется, как правило, суммарная ЭМГ. Она представляет собой результат сложения потенциалов действия ряда двигательных единиц, в состав которых входят мотонейрон, его аксон и несколько мышечных волокон. Задача исследователя сводится к отведению, усилению и регистрации этих потенциалов. Для этих целей используются электромиографы.

При подготовке к записи ЭМГ для снижения сопротивления кожи ее обрабатывают спиртом в области двигательной точки мышцы (место, где сосредоточено наибольшее количество двигательных единиц), закрепляют электроды на коже с помощью пластыря (по 2 электрода на каждую мышцу - отведение биполярное) и для уменьшения помех «заземляют» испытуемого с помощью специального электрода. Все отводящие электроды подсоединяются к входу усилителя, который связан с регистрирующим блоком.

Количественный анализ ЭМГ включает определение величины амплитуды осцилляций и частоту их следования. В современных приборах этот процесс осуществляется с помощью микропроцессорной техники, и на экран дисплея поступает алфавитно-цифровая информация о частотном спектре и средней величине входного сигнала ЭМГ. Механизм обработки ЭМГ включает измерение в миллиметрах по восходящему колену высоты зубцов и определение средней

амплитуды колебаний. Зная цену 1 мм в микровольтах (по калиб- ровочному сигналу, который записывается до регистрации ЭМГ), вычисляют величину осцилляций.

Частоту следования осцилляций определяют путем подсчета количества зубцов в единицу времени (импульс в 1 с).

Возрастание амплитуды и уменьшение частоты следования осцилляции ЭМГ являются достаточно информативными показателями для диагностики утомления, но при одном непременном условии - постоянстве нагрузки. В производственных условиях из-за возможности снижения величины прикладываемых усилий, изменений рабочей позы, характера рабочих движений, включения в работу других мышечных групп и т.д. это условие может нарушаться, что затрудняет оценку утомления по ЭМГ-показателям. В связи с этим для оценки мышечного утомления в последнее время используют тесты с дозированной физической нагрузкой, например удержанием 50% или 75% от МПС в течение определенного времени (30 с или до «отказа») с одновременной регистрацией ЭМГ. Сравнение биоэлектрической активности мышц во время удержания дозированных нагрузок в динамике рабочего дня позволяет дать объективную характеристику функционального состояния нервно-мышечного аппарата.

2.4. МЕТОДЫ ИССЛЕДОВАНИЯ ВНЕШНЕГО ДЫХАНИЯ И ГАЗООБМЕНА

Функциональное состояние дыхательного аппарата может характеризоваться как качественными (ритм), так и количественными (частота, глубина дыхания, минутный объем дыхания, жизненная емкость легких) показателями.

Жизненная емкость легких (ЖЕЛ) - показатель внешнего дыхания, включающий дыхательный объем, т.е. объем воздуха, вдыхаемый и выдыхаемый при каждом дыхательном цикле (обычно около 500 мл), резервный (дополнительный) объем вдоха - объем воздуха, поступающий в легкие при максимальном (после спокойного) вдохе (около 1500 мл), и резервный объем воздуха - тот объем, который можно максимально выдохнуть после спокойного выдоха (около 1500 мл).

ЖЕЛ не является показателем функциональной способности аппарата внешнего дыхания. Величина ЖЕЛ зависит в основном от

пола, возраста и роста. Однако в гигиене труда определение этого показателя можно осуществлять при сравнительной оценке оптимальности рабочих поз. Так, если ЖЕЛ в свободном вертикальном положении принять за 100%, то при сгибании туловища вперед она будет составлять 88,5%, а при сгибании назад - 75%.

На величину ЖЕЛ оказывает влияние интенсивность физической работы: незначительная нагрузка увеличивает ЖЕЛ, тяжелая - снижает ее. Последнее связано с активным выдохом, участие в котором принимают мышцы, уменьшающие объем грудной клетки. Определение ЖЕЛ может использоваться также для оценки уровня физической работоспособности человека.

Определение ЖЕЛ проводится с помощью сухого или водного спирометра. Перед проведением измерения на нос исследуемого накладывается зажим. После максимально глубокого вдоха производится максимально глубокий выдох в мундштук. Выдох не должен быть форсированным (чрезвычайно быстрым), его время исследователем не ограничивается. Измерение производят 3-5 раз до получения близких результатов, из которых учитывается максимальный.

Более точные данные получаются при графической регистрации ЖЕЛ на спирографах различных систем. Исследования на них проводят, как и на спирометрах. Для получения более точных и сравнимых результатов измеренный объем выдохнутого воздуха необходимо

Таблица 2.1. Коэффициент для приведения объема газа к системе BTPS

Температура вдыхаемого воздуха, ?С

Коэффициент

15

1,128

16

1,123

17

1,117

18

1,113

19

1,108

20

1,102

21

1,096

22

1,091

23

1,085

24

1,080

25

1,075

привести к тем условиям, которые имелись в легких, т.е. учитывать температуру тела, окружающее давление и полное насыщение водяными парами, или BTPS (Body, Temperature, Pressure, Satyrated). Для упрощения расчетов следует умножить ЖЕЛ на поправочный коэффициент (табл. 2.1).

Помимо абсолютного значения, ЖЕЛ выражают также в процентах к нормативам, разработанным с учетом пола, возраста и роста человека. Для расчета должной ЖЕЛ (ДЖЕЛ) имеются специальные номограммы и расчетные формулы. Для мужчин 25-60 лет ДЖЕЛ (в литрах) рассчитывается по формуле:

ДЖЕЛм = 0,052 ? Р - 0,019 ? В - 3,76,

где: Р - рост, см; В - возраст, годы.

Считается, что фактическая ЖЕЛ соответствует должной, если она отклоняется от нее не более чем на ?15%.

Минутный объем дыхания (МОД), или легочная вентиляция, - объем воздуха, который вентилируется в легких за 1 мин для обеспечения организма необходимым количеством кислорода и выведения углекислого газа. Практически МОД обычно рассчитывают по объему воздуха, который выдохнул испытуемый за определенное время (3-5 мин), с последующим делением его на число минут. Если дыхание равномерное, то МОД является произведением глубины дыхания на его частоту. Если оно неравномерное, то МОД равен сумме всех дыхательных объемов за минуту. Величина МОД зависит от потребности организма в кислороде и степени утилизации вентилируемого воздуха, т.е. количества кислорода, поглощаемого из определенного объема воздуха.

МОД в стационарных условиях может определяться путем измерения объема выдыхаемого за известный промежуток времени воздуха при помощи спирографов. В зависимости от конструкции прибора используется маска с резиновой прокладкой, плотно прижимаемой к лицу, или загубник; в последнем случае на нос испытуемому накладывается зажим. Преимущество использования загубника заключается в значительном уменьшении «мертвого пространства».

При исследовании легочной вентиляции по методу Дугласа забор выдыхаемого воздуха в мешок в соответствии с задачами исследования осуществляется в течение 3-5 мин (время фиксируется по

секундомеру). После опыта мешок Дугласа соединяют с газомером, и воздух, содержащийся в нем, пропускают через газомер. Разделив полученный объем воздуха на количество минут (время отбора), рас- считывают МОД.

Полученные объемные величины легочной вентиляции необходимо привести к стационарному состоянию (т.е. воздух без примеси водяных паров, температура 0? и давление 760 мм рт. ст.) по формуле:

Величина МОД в покое у мужчин составляет 5-7 л, у женщин - несколько меньше (на 20-25%). При выполнении физической работы (за исключением локальной) с преобладанием динамического компонента существует практически прямая зависимость между интенсивностью нагрузки и величиной МОД. Это позволяет в ряде случаев классифицировать тяжесть труда по величине МОД. Так, легкая работа - МОД до 12 л/мин, средняя - до 20 л/мин, тяжелая - до 36 л/мин и очень тяжелая - свыше 36 л/мин.

Частота дыхания (количество дыхательных движений в 1 мин) определяется путем визуального наблюдения за дыхательными экскурсиями грудной клетки, однако в производственных условиях это не всегда осуществимо. Указанный метод не позволяет также качественно охарактеризовать дыхание, т.е. определить его ритм. С целью устранения указанных недостатков можно использовать различные приборы, которые позволяют получить графическую запись дыхательных движений. В стационарных условиях (фиксированное рабочее место) используют спирограф или пневмограф. Их наиболее простая конструкция состоит из манжеты аппарата для измерения артериального давления, соединенной резиновой трубкой с капсулой Марея. Манжета укрепляется в области нижней части грудной клетки испытуемого. Затем через тройник система заполняется воздухом и герметизируется. Запись проводится на самописце.

Иногда по условиям технологического процесса трудовая деятельность испытуемого связана с постоянным перемещением или осу- ществляется в особых условиях (монтажные работы на высоте). В этом случае применяется телеметрическая аппаратура (например, «Спорт»). На груди испытуемого фиксируется датчик, который представляет собой резиновую трубку, наполненную электропроводящим порошком (графитом). При движении грудной клетки изменяется диаметр трубки, а следовательно, и электрическое сопротивление графита, которое фиксируется передатчиком, закрепленным на поясе испытуемого. Приемник, настроенный на частоты передатчика, передает сигналы на осциллограф или чернильный самописец.

Однако при физической работе с участием мышц корпуса информативность названных выше методик ограничена, так как пневмо- граммы отражают не только экскурсию грудной клетки, но и артефакты от мышечных напряжений, причем последние бывают столь велики, что полностью маскируют дыхательные движения.

Глубина дыхания определяется как частное от деления МОД (в миллиметрах) на число дыханий в 1 мин.

Измерение газообмена часто бывает необходимо для определения величины энерготрат при выполнении различных видов трудовой деятельности. Во-первых, величина энерготрат может служить мерой тяжести (только для физических работ с преобладанием динамического компонента) труда; во-вторых, быть информативным показателем для оценки рациональности трудового процесса (например, энер- готрат до и после внедрения оздоровительных мероприятий). Рост величины энерготрат при неизменной производительности труда служит достаточно важным признаком развития утомления. Кроме того, величину энерготрат следует использовать при оценке производственного микроклимата, нормировании и организации труда.

Существует несколько методов определения величины энерготрат человека. Среди них в гигиене труда наиболее широко используется метод непрямой калориметрии, который включает в себя обязатель- ное измерение газообмена. Под газообменом понимают процессы поглощения организмом кислорода из вдыхаемого воздуха и выделение углекислого газа.

Для определения содержания углекислого газа и кислорода в выдыхаемом воздухе используют газоанализаторы, которые могут быть физическими и химическими. В химических газоанализаторах применяют метод избирательного поглощения углекислого газа и

кислорода различными химическими соединениями с последующим определением их объемов. Физические газоанализаторы используют физические свойства газов; они подразделяются на электрические, магнитные и др.

Измерив тем или иным способом количество потребленного кислорода и выделенного углекислого газа, рассчитывают дыхательный коэффициент (СО22). По его величине определяют калорический эквивалент кислорода, умножив который на количество потребленного кислорода, получают величину энерготрат.

Для ориентировочного расчета величины энерготрат можно использовать следующие формулы:

для региональной работы - Е (кДж) = 4,18 (-0,52 + 0,17 МОД); для локальной работы - Е (кДж) = 4,18 (1,27 + 0,04 МОД).

Коэффициент 4,18 служит для перевода килокалорий в килоджоули.

2.5. МЕТОДЫ ИССЛЕДОВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

В практике физиолого-гигиенических исследований наиболее часто используют измерения гемодинамических показателей и электрокардиографию.

Основными показателями функционального состояния системы кровообращения, исследование которых доступно в широкой прак- тике, являются артериальное давление, частота сердечных сокращений, ударный и минутный объемы сердца, среднее динамическое давление.

Частота сердечных сокращений (ЧСС) - лабильный и информативный показатель функционального состояния сердечно-сосудистой системы. Она может быть подсчитана пальпаторно, по ЭКГ или визуально по шкале пульсотахометра. По частоте сердечных сокращений нормируются предельно допустимые величины физического напряжения при операциях с преобладанием статической нагрузки, а также при общей, региональной и локальной динамической работе.

В настоящее время измерение ЧСС во время работы используется для косвенной оценки уровня максимального потребления кислоро-

да (МПК). Это основано на параллелизме между степенью учащения сокращений сердца и степенью увеличения потребления кислорода во время работы. При этом используется показатель физической работоспособности Р\WС170 (physical working capacity):

МПКрасх = 1,7 Р\WС170 + 1240 (мг/мин).

Величина МПК отражает уровень физической работоспособности человека. В то же время величина МПК в известной степени оценивает состояние сердечно-сосудистой системы, определяя пределы возможного увеличения минутного объема сердца у обследуемого. МПК для нетренированного человека (мужчины) составляет 2,8- 3,03 л/мин (при σ = 0,4?0,46).

Артериальное давление (АД) измеряется аппаратом Рива-Роччи, или сфигмоманометром, по методу Н.С. Короткова. По данным систолического и диастолического давления могут быть рассчитаны следующие гемодинамические показатели:

'пульсовое давление (ПД), по изменениям которого можно составить косвенное представление о работе сердца:

ПД = СД - ДД,

где: ПД - пульсовое давление, мм рт.ст.; СД - систолическое (максимальное) давление, мм рт.ст.; ДД - диастолическое (минимальное) давление, мм рт.ст.;

'среднее динамическое давление (СДД), характеризующееся стабильностью, изменения его указывают на неустойчивость механизмов регуляции кровообращения:

СД=СД/3 + СД;

ударный объем сердца (УО), определяемый по формуле Старра:

УО = 101 + 0,5 СД - 1,09 ДД - 0,6 В,

где: УО - ударный объем, мл; СД - систолическое давление; ДД - диастолическое давление; В - возраст обследуемого, годы;

'минутный объем сердца (МО), который определяется как произведение ударного объема и частоты сердечных сокращений:

МО = УО ? ЧСС.

В целях более объективной оценки функционального состояния сердечно-сосудистой системы целесообразно также вычислять должный минутный объем (ДМО):

ДМО = 2,2 ? S,

где: 2,2 - сердечный индекс, л; S - поверхность тела обследуемого, рассчитываемая по формуле:

где: р - масса тела, кг; h - рост, см; k - коэффициент, равный для женщины 0,162, для мужчины - 0,167. Для ускорения расчетов поверхность тела может определяться по номограмме (рис. 2.1).

Сопоставление МО и ДМО позволяет более точно охарактеризовать специфику функциональных изменений, обусловленных воз- действием различных факторов.

Гемодинамические показатели позволяют судить о снабжении работающих органов кислородом, питательными веществами, гормонами и другими регуляторами. Характер и выраженность этих изменений указывают на степень тяжести и напряженности труда. Так, например, при умеренной мышечной нагрузке наиболее рациональной и эффективной реакцией является увеличение ударного объема (УО) без ускорения или при незначительном ускорении ЧСС. За счет этого увеличивается минутный объем (МО) сердца, и работающие мышцы получают достаточное количество крови.

Более тяжелая мышечная нагрузка, особенно в неблагоприятных гигиенических условиях, влечет за собой менее рациональную реакцию. Она выражается в том, что достаточное увеличение МО достигается не только и не столько за счет увеличения силы сердечной мышцы и УО, но в большей степени за счет учащения пульса. Это ухудшает кровоснабжение самого сердца.

При еще большей нагрузке в неудовлетворительных гигиенических условиях реакции системы кровообращения становятся все менее

рациональными и адекватными. При самой тяжелой работе, как физической, так и умственной, со стороны системы кровообращения обнаруживаются парадоксальные патологические реакции. У работающих уменьшается показатель УО, что не компенсируется соответствующим учащением пульса. Иногда это сопровождается относительным замедлением пульса по сравнению с периодом устойчивой работоспособности или с его среднесменной частотой. В результате показатель МО не увеличивается, а иногда даже уменьшается. Появляются также парадоксальные сдвиги в ту или иную сторону показателя СДД, особенно заметные у работников умственного труда.

В большинстве случаев описанные патологические реакции носят временный характер. У части работающих по разным причинам эти сдвиги могут стабилизироваться и со временем модифицироваться в соответствующее сердечно-сосудистое заболевание.

Электрокардиография (ЭКГ) основана на регистрации разности потенциалов сердца, проецируемых на поверхность тела.

В физиологии и гигиене труда применяют двухполюсные отведения и чаще всего три классических, или стандартных: 1) рука - рука; 2) правая рука - левая нога; 3) левая рука - левая нога.

У здоровых людей ЭКГ не дает полной информации о состоянии организма. В настоящее время разработан ряд методи- ческих приемов обработки данных ЭКГ, которые повысили ее значимость в проведении обследования человека в процессе трудовой деятельности. К числу их относится метод вариационной пульсометрии.

Вариационная пульсометрия основана на данных измерения интервала R-R. Для этого у обследуемого проводят непрерывную запись ЭКГ в течение 2,5-3 мин. Измеряют 75-100 последовательных интервалов R-R. На основании этих данных строится вариационная кривая (рис. 2.2).

Рис. 2.1. Номограмма для определения поверхности тела по росту и массе

Рис. 2.2. Вариационная пульсограмма:

1 - в состоянии покоя; 2 - после физической нагрузки; 3 - во время сна (по Р.М. Баевскому)

Положение вариационной кривой на графике и ее форма позволяют судить о характере нервных влияний на сердечную деятель- ность. Симпатотония характеризуется смещением вариационной кривой влево, при этом кривая сужена и имеет одну острую вершину. При ваготонии кривая смещена вправо, расширена и имеет несколько вершин. Выделяют три типа кривых, характеризующих состояние вегетативной нервной системы: нормотонические (с модой интервала в пределах 0,7-0,9 с), симпатотонические (при моде 0,5-0,7 с) и ваготонические (мода интервала находится в пределах 1,0-1,2 с).

Достаточно полно вариационная кривая может быть описана параметрами моды (М0), амплитудой моды (АМ0) и вариационным размахом (Δχ). М0 - наиболее часто встречающиеся значения R-R-интервала, АМ0 - количество наиболее часто встречающихся

величин R-R-интервала в процентах от общего числа анализируемых интервалов, Δχ - разница между максимальным и минимальным интервалами.

По показателям математического анализа сердечного ритма можно судить и о степени напряжения регуляторных механизмов. Для этих целей пользуются так называемым индексом напряжения (ИН), который рассчитывают по специальной формуле:

При напряжении механизмов адаптации включение в процесс управления более высоких уровней приводит к значительной цен- трализации управления и соответствующим изменениям индекса напряжения, увеличению амплитуды моды, уменьшению значений моды и вариационного размаха.

Значение ИН изменяется от 20-70 в покое до 500-1000 в состоянии физического или эмоционального стресса. Анализ кардиоин- тервалов свидетельствует о повышении напряжения регуляторных механизмов в процессе работы и его зависимости от характера труда. Изменение ИН регистрируется в ряде профессий операторского труда и при физической нагрузке.

Состояние сердечной деятельности может характеризоваться также при помощи различных индексов и коэффициентов, расчет которых достаточно прост.

Сердечный индекс (СИ) используется для характеристики интенсивности кровообращения и представляет собой отношение величины МО к единице поверхности тела (ПТ):

В условиях основного обмена у здорового человека СИ составляет 2,2 ? 0,3 л/(мин ? м2).

Вегетативный индекс Кердо (ВИК) отражает степень влияния на сердечную деятельность парасимпатической иннервации. Он рас- считывается по формуле:

Положительное значение ВИК говорит о преобладании симпатических влияний, отрицательное - о преимущественно парасимпатических.

Коэффициент выносливости (КВ) может использоваться для оценки степени тренированности сердечно-сосудистой системы при выполнении физической нагрузки. Он представляет отношение ЧСС

к ПД:

Увеличение значения КВ, связанное с уменьшением ПД, является показателем детренированности сердечно-сосудистой системы.

Показатель качества реакции (ПКР) служит той же цели и может характеризовать период восстановления после выполнения интен- сивной работы. ПКР определяют по формуле:

где: ПД1 и ЧСС1 - пульсовое давление и частота пульса до нагрузки; ПД2 и ЧСС2 - пульсовое давление и частота пульса после нагрузки.

У здорового человека ПКР меньше единицы. Увеличение значения ПКР свидетельствует о неблагоприятной реакции сердечно- сосудистой системы на нагрузку.

2.6. МЕТОДЫ ИССЛЕДОВАНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

К специфическим методам оценки функционального состояния нервной деятельности относятся исследования внимания, памяти, скорости реакций, подвижности рефлексов, электроэнцефалография.

Исследование внимания является важнейшим в психофизиологической оценке труда операторов.

Концентрацию и устойчивость внимания определяют с помощью методики бланковой пробы «перепутанных линий». На бланк нанесено 25 перепутанных линий, начинающихся слева и заканчивающихся справа. Слева линии пронумерованы. Обследуемый визуально прослеживает ход каждой линии, проставляя справа тот номер,

под которым линия начиналась слева. Оценку задания проводят по времени его выполнения и по количеству ошибок, определяемых с помощью эталонного бланка.

Объем внимания можно исследовать с помощью методики «расстановки чисел». Обследуемый получает бланк с изображением двух квадратов, разбитых на 25 клеток каждый. В клетках верхнего квадрата в случайном порядке расположены разнообразные двузначные числа, в нижнем квадрате клетки свободны. Задача обследуемого заключается в последовательном заполнении клеток пустого квадра- та числами, которые написаны в верхнем квадрате, в возрастающем порядке в течение 2 мин. Проверка ведется с использованием эталона. Подсчитываются количество проставленных чисел и количество ошибок. При правильном заполнении только 12-13 клеток можно говорить о недостаточном объеме внимания; заполнение 17-18 клеток и более свидетельствует о хорошем объеме внимания. Вычисляется также процент ошибочных ответов по отношению к общему числу расставленных чисел.

Для оценки способности переключения внимания применяют следующую методику. В квадрате из 49 клеток в случайном порядке отпечатаны черным цветом числа от 1 до 25 и красным - от 1 до 24. Обследуемый называет, показывая вначале в прямом порядке, все черные числа, а затем в обратном порядке - красные. При времени выполнения теста менее 4 мин можно говорить о хорошем результате, свыше 4 мин - о недостаточном уровне переключаемости внимания,

Исследование памяти предусматривает оценку способности к запоминанию определенного объема информации. Проба «память на числа» оценивает способность к непосредственному запоминанию. Обследуемому в течение 3 с предъявляется таблица с 10 двузначными числами, после чего он в течение 1 мин должен записать запомнившиеся числа. Воспроизведение их спустя 30 или 40 мин позволяет судить о долговременной памяти. При оценке результатов учитывается общее количество чисел, которое запомнил обследуемый.

Проба «память на числа» может быть заменена пробой «память на слова». При этом исследователь зачитывает ровным голосом 10 слов, немногосложных и логически друг с другом не связанных. После прочтения обследуемый должен их воспроизвести. Оценка памяти осуществляется по 4-балльной системе: запоминание 8-10 слов (чисел) указывает на отличную память, 6-7 - на хорошую, 4-5 - на удовлетворительную, менее 4 - на плохую.

Для регистрации скорости и простой зрительно- (слухо-) моторной реакции применяют универсальный хронорефлексометр. Обследуемый садится перед выносным блоком прибора, на который подаются световой или звуковой сигналы и в который вмонтирована кнопка, останавливающая электронный счетчик времени. Испытуемый, держа палец на кнопке, должен как можно быстрее нажать ее после подачи сигнала. Исследователь сидит перед пане- лью управления и нажатием ключа (тумблера) подает тот или иной сигнал. После нажатия испытуемым кнопки сигнал отключается, а счетчик фиксирует скрытое время реакции в миллисекундах. Можно давать серию в 10 последовательных сигналов, высчитав затем средний показатель латентного периода простой двигательной реакции.

Исследование подвижности нервных процессов в зрительном или слуховом анализаторе проводится также для оценки функци- онального состояния ЦНС. Для определения критической частоты слияния мельканий (КЧСМ) обследуемому предъявляют серию световых сигналов, скорость мелькания которых изменяется с помощью потенциометра. Испытуемый должен установить ту минимальную частоту мельканий, при которой световой сигнал воспринимается им как непрерывный.

Определение критической частоты слияния звуковых колебаний проводят следующим образом: обследуемому через наушники подаются звуковые импульсы от генератора, частота которых может плавно изменяться. Импульсы подаются с постепенным увеличением их частоты до максимума. Обследуемый устанавливает момент, когда отдельные звуковые импульсы сливаются в сплошной тон.

Электроэнцефалография (ЭЭГ) относится к объективным инструментальным методам исследования функционального состояния ЦНС и представляет собой регистрацию биоэлектрической активности головного мозга.

2.7. ГИГИЕНИЧЕСКИЕ КРИТЕРИИ ТЯЖЕСТИ И НАПРЯЖЕННОСТИ ТРУДОВОГО ПРОЦЕССА

В настоящее время насчитывают сотни профессий, характеризующихся различными содержанием, условиями и интенсивностью

выполнения производственных заданий, причем влияние их на функциональное состояние работающего, его здоровье может быть идентичным. Это позволяет провести классификацию трудовых процессов по тяжести и напряженности, что необходимо для решения вопросов регламентации труда, обоснования основных направлений его оздоровления, нормирования факторов окружающей среды, предоставления тех или иных льгот рабочим; может быть использовано при аттестации рабочих мест.

Физиологическое напряжение организма при трудовой деятельности может быть обусловлено или выполнением физической работы, или нагрузками на центральную нервную систему. В зависимости от этого труд характеризуется тяжестью или напряженностью.

Тяжесть труда - характеристика трудового процесса, отражающая в основном нагрузку на опорно-двигательный аппарат и функциональные системы (сердечно-сосудистую, дыхательную и др.), обеспечивающие его деятельность. Иными словами, тяжесть труда определяется энергетическим (силовым) компонентом.

Напряженность труда - характеристика трудового процесса, отражающая преимущественную нагрузку на центральную нервную систему, определяется нервным, психоэмоциональным напряжением, длительностью и интенсивностью интеллектуальной нагрузки.

Подобное разделение труда (тяжелый или напряженный) условно, так как физический труд обязательно сопровождается нагрузкой на ЦНС, а интеллектуальная работа - мышечным компонентом (например, поддержание рабочей позы).

Для классификации труда по степени тяжести и напряженности используются качественные и количественные показатели.

К качественным показателям относятся:

1) субъективные (жалобы на утомление и т.д.);

2) социальные (текучесть кадров);

3) технико-экономические (брак, производительность труда и т.д.);

4) медико-биологические (состояние здоровья трудового коллектива, заболеваемость и т.д.).

Среди количественных показателей выделяют:

1) физиологические, т.е. показатели протекающих физиологических реакций в организме работающего как во время трудовой деятельности, так и после нее (восстановительный период, который

также может характеризовать степень тяжести или напряженности

труда);

2) эргометрические, т.е. показатели, характеризующие количество выполненной работы (масса переносимого груза, физическая динамическая нагрузка и т.д.).

Тяжесть трудового процесса оценивают в соответствии с «Руководством по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» (Р 2.2.2006-05). Уровни факторов тяжести труда выражены в эргономических величинах, характеризующих трудовой процесс, независимо от индивидуальных особенностей работающего.

Показателями тяжести трудового процесса являются (табл. 2.2):

- физическая динамическая нагрузка;

- масса поднимаемого и перемещаемого вручную груза;

- стереотипные рабочие движения;

- статическая нагрузка;

- рабочая поза;

- наклоны корпуса;

- перемещение в пространстве.

Каждый из указанных факторов трудового процесса для количественного измерения и оценки требует своего подхода.

Физическая динамическая нагрузка определяется в единицах внешней механической работы за смену (кг ? м).

Масса поднимаемого и (или) перемещаемого вручную груза (кг) на протяжении смены (постоянно или при чередовании с другой работой) определяется его взвешиванием на товарных весах. При этом регистрируется максимальная величина. Названный показатель можно определить по документам (технологический регламент). Для определения суммарной массы груза, перемещаемого в течение каждого часа, масса всех грузов суммируется. В том случае, когда переносится груз одной массы, он умножается на число подъемов или перемещений в течение каждого часа. Если расстояние перемещения груза разное, то суммарная механическая работа сопоставляется со средним расстоянием перемещения.

Для подсчета вышеуказанной массы необходимо знать массу груза, перемещаемого вручную в каждой операции, расстояние его перемещения в метрах и общее количество операций за смену. Подсчитывается внешняя механическая работа за одну операцию путем умножения массы груза (кг) на расстояние его переноса (м), и

Таблица 2.2. Классы условий труда по показателям тяжести трудового процесса (Р 2.2.2006-05)

Продолжение табл. 2.2

Продолжение табл. 2.2

Окончание табл. 2.2

далее, умножая полученную величину на количество операций, рассчитывают данный показатель за смену*.

Для правильной оценки труда по показателю физической динамической нагрузки необходимо также учитывать пол работающего, характер мышечной нагрузки. Последний может быть общим, когда в трудовую деятельность вовлечено более 2/3 всей мышечной массы (работы с участием мышц ног, рук, корпуса), региональным - вовлечено от 1/з до 2/з мышечной массы (работы с участием мышц рук и плечевого пояса) и локальным - вовлечено менее 1/з мышечной массы (работы с участием мышц рук).

Стереотипные рабочие движения согласно «Классификации...» подразделяются в зависимости от характера мышечной нагрузки на локальные и региональные. Понятие «рабочее движение» подразумевает однократное перемещение тела или его части из одного положения в другое.

Локальные движения, как правило, выполняются в быстром темпе (60-250 движений в минуту), их количество за смену может достигать нескольких десятков тысяч. При локальных работах темп, т.е. количество движений в единицу времени, практически не меняется; подсчитав число движений за 10-15 мин, рассчитывают число движений за 1 мин. Полученную величину умножают на количество минут, в течение которых выполняется эта работа. Время работы определяется путем хронометражных наблюдений. Число движений можно определить также по дневной выработке.

Региональные рабочие движения выполняются, как правило, в более медленном темпе, и их легко подсчитать за 10-15 мин или за 1-2 операции несколько раз за смену. Общее количество движений за смену определяется, как и при локальной работе.

Статическая нагрузка (кгс ? с), связанная с поддержанием человеком груза или приложением усилия без перемещения тела или его отдельных звеньев, рассчитывается путем умножения величины удерживаемого усилия на время его удержания в секундах.

В производственных условиях статические усилия встречаются в двух видах: удержание обрабатываемого изделия (инструмента) и прижатие обрабатываемого изделия (инструмента) к обрабаты- вающему инструменту. Величину статического усилия определяют массой удерживаемого изделия, которую измеряют взвешиванием на весах. Величина прижатия может быть определена с помощью тензометрических (пьезокристаллических) датчиков, которые закрепляются на инструменте или изделии. Время удержания статического усилия устанавливают на основании хронометражных исследований (по фотографии рабочего дня).

Характер рабочей позы (свободная, неудобная, фиксированная, вынужденная) определяется визуально. Время пребывания в вынужденной позе находят на основании хронометража.

Число наклонов корпуса (за смену) определяют путем их прямого подсчета за смену или за одну операцию, в последнем случае умножая их число на количество операций в течение рабочего дня. Глубину наклона измеряют в градусах с помощью любого простого приспособления для измерения углов (например, транспортира).

Перемещение в пространстве (переходы, обусловленные технологическим процессом, в течение смены по горизонтали или вертикали - по лестницам, пандусам и др., км) определяется с помощью шагомера. Во время обеденного перерыва и регламентированных перерывов количество шагов не фиксируется. Число шагов за смену умножается на длину шага (мужской шаг равняется в среднем 0,6 м, женский - 0,5 м), и полученная величина выражается в км.

Общая оценка труда по степени тяжести проводится на основании всех приведенных выше показателей. Окончательная оценка устанавливается по показателю, отнесенному к наибольшему классу. При наличии двух и более показателей классов 3.1 и 3.2 общая оценка повышается на одну ступень (соответственно 3.2 и 3.3 классов). Наивысшая оценка труда по степени тяжести - 3-й класс, 3-я степень.

Таблица 2.3. Классы условий труда по показателям напряженности трудового процесса (Р 2.2.2009-05)

Продолжение табл. 2.3

Продолжение табл. 2.3

Продолжение табл. 2.3

Продолжение табл. 2.3

Окончание табл. 2.3

Напряженность трудового процесса характеризуется рядом факторов, которые имеют качественную или количественную выраженность и сгруппированы по видам нагрузок: интеллектуальные, сенсорные, эмоциональные, монотонные, режимные (табл. 2.3). Оценка напряженности труда профессиональной группы работников основана на анализе трудовой деятельности и ее структуры. При этом используется метод хронометражных наблюдений в динамике всей рабочей смены на протяжении не менее одной недели.

Нагрузки интеллектуального характера включают содержание работы, восприятие сигналов (информации) и их оценку, распределение функций по степени сложности задания и характеру выполняемой работы.

Критерий «содержание работы» указывает на степень сложности выполнения задания: от решения простых задач до творческой (эвристической) деятельности с решением сложных заданий при отсутствии алгоритма. Например, наиболее простые задачи решают лаборанты (1-й класс условий труда); деятельность, требующая решения простых задач, но уже с выбором (по инструкции), характерна для медицинских сестер, телефонистов и т.п. (2-й класс). Сложные задачи, решаемые по известном алгоритму (работа по серии инструкций), имеют место в работе руководителей, мастеров промышленных предприятий, водителей транспортных средств и др. (класс 3.1). К наиболее сложной по содержанию работе, требующей творческой (эвристической) деятельности, относится труд научных сотрудников, конструкторов, врачей и др. (класс 3.2).

Фактор «восприятие сигналов (информации) и их оценка», включающий последующую коррекцию действий и выполняемых операций, относится ко 2-му классу (лаборант). Восприятие сигналов с последующим сопоставлением фактических значений параметров (информации) с их номинальными требуемыми уровнями отмечается в работе мастеров цехов, медсестер и др. (класс 3.1). В том случае когда трудовая деятельность требует восприятия сигналов с последующей комплексной оценкой всех производственных пара- метров (информации), труд по напряженности относится к классу 3.2 (руководители предприятий, водители транспортных средств, врачи и т.д.).

«Распределение функций по степени сложности задания». Любая трудовая деятельность характеризуется распределением функций между работниками. Соответственно чем больше возложено функ-

ций на работника, тем выше напряженность его труда. Так, трудовая деятельность, содержащая простые функции, направленные на обработку и выполнение конкретного задания, не приводит к значительной напряженности труда (например, лаборант - 1-й класс). Напряженность возрастает, когда наряду с выполнением, обработкой задания осуществляется их последующая проверка (медсестра, телефонистка и др. - 2-й класс). Если в трудовую деятельность включен контроль за выполнением задания, то напряженность труда еще более возрастает (мастера, начальники цехов, водители транспортных средств - класс 3.1).

Наиболее сложные функции - это предварительная подготовка и последующее распределение заданий другим лицам (руководители предприятий, научные работники, врачи и т.д. - класс 3.2).

«Характер выполняемой работы». В том случае, когда работа выполняется по индивидуальному плану, уровень напряженности невысок (1-й класс - лаборанты). Однако при осуществлении трудовой деятельности по строго установленному графику с возможностью его коррекции по мере необходимости напряженность труда повышается (медсестры, телефонистки и др. - 2-й класс). Еще большая напряженность труда характерна для работы в условиях дефицита времени (мастера цехов, научные работники и т.п. - класс 3.1), а также дефицита времени и информации (руководители предприятий, врачи и др. - класс 3.2).

Сенсорные нагрузки включают следующие факторы: длительность сосредоточенного наблюдения (% от времени смены), плотность сигналов (световых, звуковых) и сообщений в среднем за 1 ч работы, число производственных объектов одновременного наблюдения, размер объекта различения при длительности сосредоточенного внимания (% от времени смены), работа с оптическими приборами (микроскоп, лупа и т.п.) в зависимости от длительности сосредоточенного наблюдения (% от времени смены), наблюдение за экраном видеотерминала (часов в смену). Определение уровня указанных факторов напряженности труда не представляет особых затруднений и проводится по результатам хронометражных наблюдений. При этом длительность рабочего дня принимается за 100%.

К факторам, определяющим сенсорные нагрузки, относится также нагрузка на слуховой анализатор. Степень его напряжения устанавливают по зависимости разборчивости слов в процентах от соотношения между уровнем интенсивности речи и «белого» шума.

При отсутствии помех разборчивость слов равна 100% - 1-й класс. Ко 2-му классу относятся случаи, когда уровень речи превышает шум на 10-15 дБА и соответствует разборчивости слов, равной 90-70%, или слышимости на расстоянии до 3,5 м и т.п.

«Нагрузка на голосовой аппарат» (суммарное количество часов, наговариваемых в неделю) характеризует степень его напряжения. Наибольшие нагрузки (класс 3.1 или 3.2) отмечаются у лиц голосоречевых профессий (педагоги, воспитатели, дикторы и т.п.).

Эмоциональные нагрузки характеризуются следующими факторами: степень ответственности за результат собственной деятельности (значимость ошибки), степень риска для собственной жизни и степень ответственности за безопасность других лиц.

«Степень ответственности за результат собственной деятельности. Значимость ошибки» указывает, в какой мере работник может влиять на результат собственного труда при различных уровнях сложности осуществляемой деятельности. Для таких профессий, как руководители и мастера предприятий, авиадиспетчеры, врачи, водители и т.п., характерна наиболее высокая степень ответственности за окончательный результат работы, а допущенные ошибки могут привести к остановке техпроцесса, возникновению опасных ситуаций для жизни людей (класс 3.2). Наименьшая значимость критерия отмечается в том случае, когда работник несет ответственность только за выполнение отдельных элементов продукции, а в случае допущенной ошибки дополнительные усилия требуются только с его стороны (лаборант - 1-й класс).

«Степень риска для собственной жизни» и «степень ответственности за безопасность других лиц» характерны для водителей автотранспорта, врачей-инфекционистов и т.п. Ряд профессий характеризуется ответственностью только за безопасность других лиц (авиадиспетчеры, реаниматологи и т.д.). Имеется ряд профессий, где указанные факторы отсутствуют: научные сотрудники, лаборанты и др., - их труд оценивается как 1-й класс напряженности труда.

Монотонность нагрузок определяется числом элементов (приемов), необходимых для реализации задания или многократно повторяющихся операций, продолжительностью их выполнения (с), временем активных действий (% к продолжительности смены) и временем пассивного наблюдения за ходом техпроцесса (% от времени смены).

Интенсивность названных факторов определяют при хронометражных наблюдениях.

Режим работы характеризуется фактической продолжительностью рабочего дня, сменностью работы, наличием регламентированных перерывов и их продолжительностью (без обеденного перерыва). Определение указанных факторов напряженности труда не вызывает затруднений.

Общая оценка напряженности трудового процесса осуществляется по всем 23 показателям. Если по характеру трудовой деятельности какой-либо показатель отсутствует, то это соответствует 1-му классу (оптимальный), что и отмечается в соответствующей графе.

При окончательной оценке напряженности труда «оптимальный» (1-й класс) устанавливается в случаях, когда 17 и более показателей имеют оценку 1-го класса, а остальные относятся ко 2-му классу.

«Допустимый» (2-й класс) устанавливается в случаях, когда:

- 6 и более показателей отнесены ко 2-му классу, а остальные - к 1-му классу;

- от 1 до 5 показателей отнесены к 3.1 и/или 3.2 степеням вредности, а остальные показатели имеют оценку 1-го и/или 2-го классов.

«Вредный» (3-й) класс устанавливается, когда 6 и более показателей отнесены к 3-му классу. При этом труд относится к напряженному 1-й степени (3.1) в тех случаях, когда:

- 6 показателей имеют оценку только класса 3.1, а остальные - 1-го и/или 2-го классов;

- от 3 до 5 показателей относятся к классу 3.1, а от 1 до 3 показателей отнесены к классу 3.2.

Труд считается напряженным 2-й степени (3.2), когда:

- 6 показателей отнесены к классу 3.2;

- более 6 показателей отнесены к классу 3.1;

- от 1 до 5 показателей отнесены к классу 3.1, а от 4 до 5 показателей - к классу 3.2;

- 6 показателей отнесены к классу 3.1 и имеются от 1 до 5 показателей класса 3.2.

В тех случаях, когда более 6 показателей имеют оценку 3.2, напряженность трудового процесса оценивается на одну ступень выше - класс 3.3.

Руководство к практическим занятиям по гигиене труда : учебное пособие для вузов / Под ред. В.Ф. Кириллова. - 2008. - 416 с. : ил.

LUXDETERMINATION 2010-2013