Глава 4. МЕТОДЫ ЛУЧЕВОЙ ТЕРАПИИ

Глава 4. МЕТОДЫ ЛУЧЕВОЙ ТЕРАПИИ

Методы лучевой терапии делятся на наружные и внутренние в зависимости от способа подведения ионизирующего излучения к облучаемому очагу. Сочетание методов называют сочетанной лучевой терапией.

Наружные методы облучения - методы, при которых источник излучения находится вне организма. К наружным методам относятся методы дистанционного облучения на различных установках с использованием разного расстояния от источника излучения до облучаемого очага.

К наружным методам облучения относятся:

- дистанционная γ-терапия;

- дистанционная, или глубокая, рентгенотерапия;

- терапия тормозным излучением высокой энергии;

- терапия быстрыми электронами;

- протонная терапия, нейтронная и терапия другими ускоренными частицами;

- аппликационный метод облучения;

- близкофокусная рентгенотерапия (при лечении злокачественных опухолей кожи).

Дистанционная лучевая терапия может проводиться в статическом и подвижном режимах. При статическом облучении источник излучения неподвижен по отношению к больному. К подвижным методам облучения относятся ротационно-маятниковое или секторное тангенциальное, ротационно-конвергентное и ротационное облучение с управляемой скоростью. Облучение может осуществляться через одно поле или быть многопольным - через два, три и более полей. При этом возможны варианты встречных или перекрестных полей и др. Облучение может проводиться открытым пучком или с использованием различных формирующих устройств - защитных блоков, клиновидных и выравнивающих фильтров, решетчатой диафрагмы.

При аппликационном методе облучения, например в офтальмологической практике, аппликаторы, содержащие радионуклиды, прикладывают к патологическому очагу.

Близкофокусную рентгенотерапию применяют для лечения злокачественных опухолей кожи, при этом расстояние от выносного анода до опухоли составляет несколько сантиметров.

Внутренние методы облучения - методы, при которых источники излучения вводят в ткани или в полости организма, а также применяют в виде радиофармацевтического препарата, введенного внутрь пациента.

К внутренним методам облучения относятся:

- внутриполостное облучение;

- внутритканевое облучение;

- системная радионуклидная терапия.

При проведении брахитерапии источники излучения с помощью специальных устройств вводятся в полые органы методом последовательного введения эндостата и источников излучения (облучение по принципу afterloading). Для осуществления лучевой терапии опухолей разных локализаций существуют различные эндостаты: метрокольпостаты, метрастаты, кольпостаты, проктостаты, стомататы, эзофагостаты, бронхостаты, цитостаты. В эндостаты поступают закрытые источники излучения, радионуклиды, заключенные в оболочку-фильтр, в большинстве случаев имеющие форму цилиндров, игл, коротких стерженьков или шариков.

При радиохирургическом лечении установками гамма-нож, кибер-нож осуществляют прицельное облучение малых мишеней с помощью специальных стереотаксических устройств с использованием точных оптических направляющих систем для трехмерной (three-dimensional - 3D) радиотерапии множественными источниками.

При системной радионуклидной терапии используют радиофармацевтические препараты (РФП), вводимые пациенту внутрь, соединения, тропные к определенной ткани. Например, путем введения радионуклида йода проводят лечение злокачественных опухолей щитовидной железы и метастазов, при введении остеотропных препаратов - лечение метастазов в кости.

Виды лучевого лечения. Различают радикальную, паллиативную и симптоматическую цели лучевой терапии. Радикальную лучевую терапию проводят с целью излечения больного с применением радикальных доз и объемов облучения первичной опухоли и зон лимфогенного метастазирования.

Паллиативное лечение, направленное на продление жизни больного путем уменьшения размеров опухоли и метастазов, выполняют меньшими, чем при радикальной лучевой терапии, дозами и объемами облучения. В процессе проведения паллиативной лучевой терапии у части больных при выраженном положительном эффекте возможно изменение цели с увеличением суммарных доз и объемов облучения до радикальных.

Симптоматическую лучевую терапию проводят с целью снятия какихлибо тягостных симптомов, связанных с развитием опухоли (болевой синдром, признаки сдавления сосудов или органов и др.), для улучшения качества жизни. Объемы облучения и суммарные дозы зависят от эффекта лечения.

Лучевую терапию проводят с различным распределением дозы облучения во времени. В настоящее время применяют:

- однократное облучение;

- фракционированное, или дробное, облучение;

- непрерывное облучение.

Примером однократного облучения служит протонная гипофизэктомия, когда лучевую терапию выполняют за один сеанс. Непрерывное облучение происходит при внутритканевом, внутриполостном и аппликационном методах терапии.

Фракционированное облучение является основным методом подведения дозы при дистанционной терапии. Облучение проводят отдельными порциями, или фракциями. Применяют различные схемы фракционирования дозы:

- обычное (классическое) мелкое фракционирование - 1,8-2,0 Гр в день 5 раз в неделю; СОД (суммарная очаговая доза) - 45-60 Гр в зависимости от гистологического вида опухоли и других факторов;

- среднее фракционирование - 4,0-5,0 Гр в день 3 раза в неделю;

- крупное фракционирование - 8,0-12,0 Гр в день 1-2 раза в неделю;

- интенсивно-концентрированное облучение - 4,0-5,0 Гр ежедневно в течение 5 дней, например в качестве предоперационного облучения;

- ускоренное фракционирование - облучение 2-3 раза в сутки обычными фракциями с уменьшением суммарной дозы за весь курс лечения;

- гиперфракционирование, или мультифракционирование - дробление суточной дозы на 2-3 фракции с уменьшением дозы за фракцию до 1,0-1,5 Гр с интервалом 4-6 ч, при этом продолжительность курса может не измениться, но суммарная доза, как правило, повышается;

- динамическое фракционирование - облучение с различными схемами фракционирования на отдельных этапах лечения;

- сплит-курсы - режим облучения с длительным перерывом на 2-4 нед в середине курса или после достижения определенной дозы;

- низкодозный вариант фотонного тотального облучения тела - от 0,1- 0,2 Гр до 1-2 Гр суммарно;

- высокодозный вариант фотонного тотального облучения тела от 1-2 Гр до 7-8 Гр суммарно;

- низкодозный вариант фотонного субтотального облучения тела от 1-1,5 Гр до 5-6 Гр суммарно;

- высокодозный вариант фотонного субтотального облучения тела от 1-3 Гр до 18-20 Гр суммарно;

- электронное тотальное или субтотальное облучение кожи в различных режимах при ее опухолевом поражении.

Величина дозы за фракцию имеет большее значение, чем общее время курса лечения. Крупные фракции более эффективны, чем мелкие. Укрупнение фракций при уменьшении их числа требует уменьшения суммарной дозы, если не изменяется общее время курса.

Различные варианты динамического фракционирования дозы хорошо разработаны в МНИОИ имени П. А. Герцена. Предложенные варианты оказались гораздо эффективнее, чем классическое фракционирование или подведение равных укрупненных фракций. При проведении самостоятельной лучевой терапии или в плане комбинированного лечения используют изоэффективные дозы при плоскоклеточном и аденогенном раке легкого, пищевода, прямой кишки, желудка, гинекологических опухолях, саркомах

мягких тканей. Динамическое фракционирование существенно повысило эффективность облучения за счет увеличения СОД без усиления лучевых реакций нормальных тканей.

Величину интервала при сплит-курсе рекомендуется сокращать и до 10- 14 дней, так как репопуляция выживших клоновых клеток появляется в начале 3-й недели. Тем не менее при расщепленном курсе улучшается переносимость лечения, особенно в случаях, когда острые лучевые реакции препятствуют проведению непрерывного курса. Исследования показывают, что выживающие клоногенные клетки развивают настолько высокие темпы репопуляции, что для компенсации каждый дополнительный день перерыва требует прибавки примерно 0,6 Гр.

При проведении лучевой терапии используют методы модификации радиочувствительности злокачественных опухолей. Радиосенсибилизация лучевого воздействия - процесс, при котором различные способы приводят к увеличению поражения тканей под влиянием облучения. Радиопротекция - действия, направленные на снижение поражающего эффекта ионизирующего излучения.

Оксигенотерапия - метод оксигенации опухоли во время облучения с использованием для дыхания чистого кислорода при обычном давлении.

Оксигенобаротерапия - метод оксигенации опухоли во время облучения с использованием для дыхания чистого кислорода в специальных барокамерах под давлением до 3-4 атм.

Использование кислородного эффекта при оксигенобаротерапии, по данным С. Л. Дарьяловой, было особенно эффективно при лучевой терапии недифференцированных опухолей головы и шеи.

Регионарная турникетная гипоксия - метод облучения больных со злокачественными опухолями конечностей в условиях наложения на них пневматического жгута. Метод основан на том, что при наложении жгута рО2 в нормальных тканях в первые минуты падает почти до нуля, а в опухоли напряжение кислорода еще некоторое время остается значительным. Это дает возможность увеличить разовую и суммарную дозы облучения без повышения частоты лучевых повреждений нормальных тканей.

Гипоксическая гипоксия - метод, при котором до и во время сеанса облучения пациент дышит газовой гипоксической смесью (ГГС), содержащей 10 % кислорода и 90 % азота (ГГС-10) или при уменьшении содержания кислорода до 8 % (ГГС-8). Считается, что в опухоли имеются так называемые острогипоксические клетки. К механизму возникновения таких клеток относят периодическое, длящееся десятки минут резкое уменьшение - вплоть до прекращения - кровотока в части капилляров, которое обусловлено в числе других факторов повышенным давлением быстрорастущей опухоли. Такие острогипоксические клетки радиорезистентны, в случае наличия их в момент сеанса облучения они «ускользают» от лучевого воздействия. В РОНЦ РАМН этот метод применяют с обоснованием, что искусственная гипоксия снижает величину предсуществующего «отрицательного» терапевтического интервала, который определяется наличием гипоксических радиорезистентных клеток в опухоли при их практически полном отсутс-

твии в нормальных тканях. Метод необходим для защиты высокочувствительных к лучевой терапии нормальных тканей, расположенных вблизи облучаемой опухоли.

Локальная и общая термотерапия. Метод основан на дополнительном разрушительном воздействии на опухолевые клетки. Обоснован метод перегревом опухоли, который происходит в связи со сниженным кровотоком по сравнению с нормальными тканями и замедлением вследствие этого отвода тепла. К механизмам радиосенсибилизирующего эффекта гипертермии относят блокирование ферментов репарации облученных макромолекул (ДНК, РНК, белки). При комбинации температурного воздействия и облучения наблюдается синхронизация митотического цикла: под воздействием высокой температуры большое число клеток одновременно вступает в наиболее чувствительную к облучению фазу G2. Наиболее часто применяют локальную гипертермию. Существуют аппараты «ЯХТА-3», «ЯХТА-4», «PRIMUS U+R» для микроволновой (СВЧ) гипертермии с различными датчиками для прогревания опухоли снаружи или с введением датчика в полости cм. рис. 20, 21 на цв. вклейке). Например, для прогревания опухоли предстательной железы используют ректальный датчик. При СВЧ-гипертермии с длиной волны 915 МГц в предстательной железе автоматически поддерживается температура в пределах 43-44 °С в течение 40-60 мин. Облучение следует сразу за сеансом гипертермии. Имеется возможность для одновременной лучевой терапии и гипертермии («Гамма Мет», Англия). В настоящее время считается, что по критерию полной регрессии опухоли эффективность термолучевой терапии в полтора-два раза выше, чем при проведении только лучевой терапии.

Искусственная гипергликемия приводит к снижению внутриклеточного рН в опухолевых тканях до 6,0 и ниже при очень незначительном уменьшении этого показателя в большинстве нормальных тканей. Кроме того, гипергликемия в условиях гипоксии ингибирует процессы пострадиационного восстановления. Считается оптимальным одновременное или последовательное проведение облучения, гипертермии и гипергликемии.

Электронакцепторные соединения (ЭАС) - химические вещества, способные имитировать действие кислорода (его сродство с электроном) и избирательно сенсибилизировать гипоксические клетки. Наиболее употребительными ЭАС являются метронидазол и мизонидазол, особенно при локальном применении в растворе диметилсульфоксида (ДМСО), что позволяет при создании в некоторых опухолях высоких концентраций препаратов существенно улучшить результаты лучевого лечения.

Для изменения радиочувствительности тканей применяют также препараты, не связанные с кислородным эффектом, например ингибиторы репарации ДНК. К числу таких препаратов относятся 5-фторурацил, галоидированные аналоги пуриновых и пиримидиновых оснований. В качестве сенсибилизатора применяют обладающий противоопухолевой активностью ингибитор синтеза ДНК-оксимочевину. К ослаблению пострадиационного восстановления ведет также прием противоопухолевого антибиотика актиномицина Д. Ингибиторы синтеза ДНК могут быть использованы для вре-

менной искусственной синхронизации деления опухолевых клеток с целью последующего их облучения в наиболее радиочувствительных фазах митотического цикла. Определенные надежды возлагаются на применение фактора некроза опухолей.

Применение нескольких агентов, изменяющих чувствительность опухолевой и нормальной тканей к облучению, называется полирадиомодификацией.

Комбинированные методы лечения - сочетание в различной последовательности хирургического вмешательства, лучевой терапии и химиотерапии. При комбинированном лечении лучевую терапию проводят в виде предили послеоперационного облучения, в некоторых случаях используют интраоперационное облучение.

Целями предоперационного курса облучения являются уменьшение опухоли для расширения границ операбельности, особенно при опухолях больших размеров, подавление пролиферативной активности опухолевых клеток, уменьшение сопутствующего воспаления, воздействие на пути регионарного метастазирования. Предоперационное облучение приводит к уменьшению числа рецидивов и возникновения метастазов. Предоперационное облучение является сложной задачей в плане решения вопросов уровня доз, методов фракционирования, назначения сроков операции. Для нанесения серьезных повреждений опухолевым клеткам необходимо подведение высоких туморицидных доз, что увеличивает риск послеоперационных осложнений, так как в зону облучения попадают здоровые ткани. В то же время операция должна быть проведена вскоре после окончания облучения, так как выжившие клетки могут начать размножаться - это будет клон жизнеспособных радиорезистентных клеток.

Поскольку преимущества проведения предоперационного облучения в определенных клинических ситуациях доказаны по увеличению показателей выживаемости больных, уменьшению числа рецидивов, необходимо четко соблюдать принципы проведения такого лечения. В настоящее время предоперационное облучение проводят укрупненными фракциями при дневном дроблении дозы, используются схемы динамического фракционирования, что позволяет провести предоперационное облучение в короткие сроки с интенсивным воздействием на опухоль с относительным щажением окружающих тканей. Операцию назначают через 3-5 дней после интенсивно-концентрированного облучения, через 14 дней после облучения с использованием схемы динамического фракционирования. Если предоперационное облучение проводят по классической схеме в дозе 40 Гр, приходится назначать операцию через 21-28 дней после стихания лучевых реакций.

Послеоперационное облучение проводятся в качестве дополнительного воздействия на остатки опухоли после нерадикальных операций, а также для уничтожения субклинических очагов и возможных метастазов в регионарных лимфатических узлах. В тех случаях, когда операция является первым этапом противоопухолевого лечения, даже при радикальном удалении опухоли, облучение ложа удаленной опухоли и путей регионарного мета-

стазирования, а также всего органа может существенно повысить результаты лечения. Следует стремиться к началу проведения послеоперационного облучения не позднее чем через 3-4 нед после операции.

При интраоперационном облучении больного, находящегося под наркозом, подвергают однократному интенсивному лучевому воздействию через открытое операционное поле. Применение такого облучения, при котором здоровые ткани просто механически отодвигаются из зоны предполагаемого облучения, позволяет повысить избирательность лучевого воздействия при местно распространенных новообразованиях. С учетом биологической эффективности подведение однократных доз от 15 до 40 Гр эквивалентны 60 Гр и более при классическом фракционировании. Еще в 1994 г. на V Международном симпозиуме в Лионе при обсуждении проблем, связанных с интраоперационным облучением, были приняты рекомендации об использовании 20 Гр в качестве максимальной дозы для снижения риска лучевых повреждений и возможности проведения в дальнейшем при необходимости дополнительного наружного облучения.

Лучевую терапию чаще всего применяют в качестве воздействия на патологический очаг (опухоль) и области регионарного метастазирования. Иногда используют системную лучевую терапию - тотальное и субтотальное облучение с паллиативной или симптоматической целью при генерализации процесса. Системная лучевая терапия позволяет добиться регресса очагов поражения у пациентов с резистентностью к химиопрепаратам.

LUXDETERMINATION 2010-2013