Оглавление

Медицинская и биологическая физика: учебник / А. Н. Ремизов. - 4-е изд., испр. и перераб. - 2012. - 648 с. : ил.
Медицинская и биологическая физика: учебник / А. Н. Ремизов. - 4-е изд., испр. и перераб. - 2012. - 648 с. : ил.
Глава 11. Физические вопросы гемодинамики

Глава 11. Физические вопросы гемодинамики

Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физической основой гемодинамики является гидродинамика. Течение крови зависит как от свойств крови, так и от свойств кровеносных сосудов.

В главе рассматриваются также физические основы работы некоторых технических устройств, используемых в связи с кровообращением.

11.1. МОДЕЛИ КРОВООБРАЩЕНИЯ

Рассмотрим гидродинамическую модель кровеносной системы, предложенную О. Франком.

Несмотря на достаточную простоту, она позволяет установить связь между ударным объемом крови (объем крови, выбрасываемый желудочком сердца за одну систолу), гидравлическим сопротивлением периферической части системы кровообращения Х0 и изменением давления в артериях.

Артериальная часть системы кровообращения моделируется упругим (эластичным) резервуаром (рис. 11.1, обозначено УР).

Так как кровь находится в упругом резервуаре, то ее объем в любой момент времени зависит от давления р по следующему соотношению:

В упругий резервуар (артерии) поступает кровь из сердца, объемная скорость кровотока равна Q. От упругого резервуара кровь оттекает с

она чрезвычайно проста и верно отражает процесс к концу диастолы. Вместе с тем изменения давления в начале диастолы с помощью этой модели не описываются.

На основе механической модели по аналогии может быть построена электрическая модель (рис. 11.3).

Здесь источник U, дающий несинусоидальное переменное электрическое напряжение, служит аналогом сердца, выпрямитель В - сердечного клапана. Конденсатор С в течение полупериода накапливает заряд, а затем разряжается на резистор R, таким образом происходит сглаживание силы тока, протекающего через резистор. Действие конденсатора аналогично действию упругого резервуара (аорты, артерии), который сглаживает колебание давления крови в артериолах и капиллярах. Резистор является электрическим аналогом периферической сосудистой системы.

В более точной модели сосудистого русла использовалось большее количество эластичных резервуаров для учета того факта, что сосудистое русло является системой, распределенной в пространстве. Для учета инерционных свойств крови при построении модели предполагалось, что эластичные резервуары, моделирующие восходящую и нисходящую ветви аорты, обладают различной упругостью. На рис. 11.4 приведено изображение модели Ростона, состоящей из двух резервуаров с различными эластичностями (упругостями) и неупругими звеньями разного гидравлического сопротивления между резервуарами. Этой модели соответствует электрическая схема, изображенная на рис. 11.5. Здесь источник тока задает пульсирующее напряжение U(t), являющееся аналогом давленияp(t): емкости С1 и С2 соответствуют упругостям k1 и k2; электрические сопротивления R1, R2 и R3 - гидравлическим сопротивлениям Х1, Х2 и Х3; силы тока I1 и I2 - скоростям оттока крови Q1 и Q2.

Такая модель описывается системой двух дифференциальных уравнений первого порядка, их решение дает две кривые, соответствующие первой и второй камерам.

Двухкамерная модель лучше описывает процессы, происходящие в сосудистом русле, но и она не объясняет колебания давления в начале диастолы.

Модели, содержащие несколько сотен элементов, называют моделями с распределенньми параметрами.

11.2. ПУЛЬСОВАЯ ВОЛНА

При сокращении сердечной мышцы (систола) кровь выбрасывается из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к периферии. Упругость стенок сосудов приводит к тому, что во время систолы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т.е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давление человека в норме равно приблизительно 16 кПа. Во время расслабления сердца (диастола) растянутые кровеносные сосуды спадают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11 кПа.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в период систолы, называют пульсовой волной.

Пульсовая волна распространяется со скоростью 5-10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она должна распространиться на расстояние 1,5-3 м, что больше расстояния от сердца к конечностям. Это означает, что фронт пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Профиль артерии схематически показан на рис. 11.6: а - после прохождения пульсовой волны; б - через артерию проходит фронт пульсовой волны; в - в артерии пульсовая волна; г - начинается спад повышенного давления.

Пульсовой волне будет соответствовать пульсирование скорости кровотока в крупных артериях, однако скорость крови (максимальное значение - 0,3-0,5 м/с) существенно меньше скорости распространения пульсовой волны.

11.3. РАБОТА И МОЩНОСТЬ СЕРДЦА. АППАРАТ ИСКУССТВЕННОГО КРОВООБРАЩЕНИЯ

Работа, совершаемая сердцем, затрачивается на преодоление сил давления и сообщение крови кинетической энергии.

Рассчитаем работу, совершаемую при однократном сокращении левого желудочка. Изобразим Vy - ударный объем крови - в виде цилиндра (рис. 11.9). Можно считать, что сердце продавливает этот объем по аорте сечением S на расстоянии l при среднем давлении р. Совершаемая при этом работа:

Если учесть, что продолжительность систолы около t« 0,3 с, то средняя мощность сердца за время одного сокращения <W> - A1 / t = = 3,3 Вт.

При операциях на сердце, которые требуют временного выключения его из системы кровообращения, пользуются специальными аппаратами искусственного кровообращения (рис. 11.10). По существу, этот аппарат является сочетанием искусственного сердца (насосная система) с искусственными легкими (оксигенатор - система, обеспечивающая насыщение крови кислородом).

11.4. ФИЗИЧЕСКИЕ ОСНОВЫ КЛИНИЧЕСКОГО МЕТОДА ИЗМЕРЕНИЯ ДАВЛЕНИЯ КРОВИ

Физический параметр - давление крови - играет большую роль в диагностике многих заболеваний. Систолическое и диастолическое давления в какой-либо артерии могут быть измерены непосредственно с помощью иглы, соединенной с манометром. Однако в медицине широко используется бескровный метод, предложенный Н.С. Коротковым. Рассмотрим физические основы этого метода на примере измерения давления крови в плечевой артерии.

Вокруг руки между плечом и локтем накладывают манжету. Сечения манжеты М, части руки Р, плечевой кости Пи плечевой артерии А показаны на рис. 11.11, а-11.13, а. При накачивании воздуха через шланг В в манжету рука сжимается. Затем через этот же шланг воздух выпускают и с помощью манометра Б измеряют давление воздуха в манжете. На поз. б тех же рисунков изображены продольные сечения плечевой артерии, соответствующие каждому случаю. Сначала избыточное над атмосферным давление воздуха в манжете равно нулю (рис. 11.11), манжета не сжимает руку и артерию. По мере накачивания воздуха в манжету последняя сдавливает плечевую артерию и прекращает ток крови (рис. 11.12). Если мускулатура расслаблена, то давление воздуха внутри манжеты, состоящей из эластичных стенок, приблизительно равно давлению в мягких тканях, соприкасающихся с манжетой. В этом заключается основная физическая идея бескровного метода измерения давления.

Выпуская воздух, уменьшают давление в манжете и в мягких тканях, с которыми она соприкасается. Когда давление станет равным систолическому, кровь будет способна пробиться через сдавленную артерию - возникает турбулентное течение (рис. 11.13).

Характерные тоны и шумы1, сопровождающие этот процесс, прослушивает врач при измерении давления, располагая фонендоскоп на артерии дистальнее манжеты (т.е. на большем расстоянии от сердца). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови, что заметно по резкому ослаблению прослушиваемых тонов. Давление в манжете, соответствующее восстановлению ламинарного течения в артерии, регистрируют как диастолическое.

Для измерения артериального давления применяют приборы, показанные на рис. 11.14: а - сфигмоманометр с ртутным манометром, б - сфигмотонометр с металлическим мембранным манометром; здесь М- манжета; Г - груша для накачивания воздуха; Р - манометр.

1 Объяснение этих звуков дал Г.И. Косицкий.

11.5. ОПРЕДЕЛЕНИЕ СКОРОСТИ КРОВОТОКА

Существует несколько методов определения скорости кровотока. Рассмотрим физические основы двух из них.

Ультразвуковой метод (ультразвуковая расходометрия) основан на эффекте Доплера (см. 7.11). От генератора 1 электрических колебаний УЗ-частоты (рис. 11.15) сигнал поступает на излучатель УЗ 2 и на устройство сравнения частот 3. УЗ-волна 4 проникает в кровеносный сосуд 5 и отражается от движущихся эритроцитов 6. Отраженная УЗ-волна 7 попадает в приемник 8, где преобразуется в электрическое колебание и усиливается. Усиленное электрическое колебание попадает в устройство 3. Здесь сравниваются колебания, соответствующие падающей и отраженной волнам, и выделяется доплеровский сдвиг частоты в виде электрического колебания:

В крупных сосудах скорость эритроцитов различна в зависимости от их расположения относительно оси: «приосевые» эритроциты движутся с большей скоростью, а «пристеночные» - с меньшей. УЗ-волна может отражаться от разных эритроцитов, поэтому доплеровский сдвиг получается не в виде одной частоты, а как интервал частот.

Таким образом, эффект Доп-плера позволяет определять не только среднюю скорость кровотока, но и скорость движения различных слоев крови.

Электромагнитный метод (электромагнитная расходоме-трия) измерения скорости кровотока основан на отклонении движущихся зарядов в магнитном поле. Дело в том, что кровь, будучи электрически нейтральной системой, состоит из поло-

Медицинская и биологическая физика: учебник / А. Н. Ремизов. - 4-е изд., испр. и перераб. - 2012. - 648 с. : ил.

LUXDETERMINATION 2010-2013