Глава 5. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛУЧЕВОЙ ТЕРАПИИ

Глава 5. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛУЧЕВОЙ ТЕРАПИИ

5.1. АППАРАТЫ ДЛЯ ДИСТАНЦИОННОЙ ЛУЧЕВОЙ ТЕРАПИИ

5.1.1. Рентгенотерапевтические аппараты

Рентгенотерапевтические аппараты для дистанционной лучевой терапии разделяются на аппараты для дальнедистанционной и близкодистанционной (близкофокусной) лучевой терапии. В России дальнедистанционное облучение проводят на аппаратах типа «РУМ-17», «Рентген ТА-Д», в которых рентгеновское излучение генерируется напряжением на рентгеновской трубке от 100 до 250 кВ. Аппараты имеют набор дополнительных фильтров из меди и алюминия, комбинация которых при разных напряжениях на трубке позволяет индивидуально для разной глубины патологического очага получить необходимое качество излучения, характеризуемое слоем половинного ослабления. Используют эти рентгенотерапевтические аппараты для лечения неопухолевых заболеваний. Близкофокусная рентгенотерапия осуществляется на аппаратах типа «РУМ-7», «Рентген-ТА», которые генерируют низкоэнергетическое излучение от 10 до 60 кВ. Применяют для лечения поверхностных злокачественных опухолей.

Основными аппаратами для проведения дистанционного облучения являются гамма-терапевтические установки различной конструкции («Агат-Р», «Агат-С», «Рокус-М», «Рокус-АМ») и ускорители электронов, которые генерируют тормозное, или фотонное, излучение с энергией от 4 до 20 МэВ и электронные пучки разной энергии. На циклотронах генерируют нейтронные пучки, протоны ускоряют до больших энергий (50-1000 МэВ) на синхрофазотронах и синхротронах.

5.1.2. Гамма-терапевтические аппараты

В качестве радионуклидных источников излучения для дистанционной гамма-терапии чаще всего используют 60Co, а также 136Cs. Период полураспада 60Co составляет 5,271 года. Дочерний нуклид 60Ni является стабильным.

Источник помещают внутрь радиационной головки гамма-аппарата, которая создает надежную защиту в нерабочем состоянии. Источник имеет форму цилиндра диаметром и высотой 1-2 см. Корпус аппарата изготав-

Рис. 22. Гамма-терапевтический аппарат для дистанционного облучения РОКУС-М

ливают из нержавеющей стали, внутри помещают активную часть источника в виде набора дисков. Радиационная головка обеспечивает выпуск, формирование и ориентацию пучка γ-излучения в рабочем режиме. Аппараты создают значительную мощность дозы на расстоянии десятков сантиметров от источника. Поглощение излучения вне заданного поля обеспечивается диафрагмой специальной конструкции.

Существуют аппараты для статического и подвижного облучения. В последнем случае источник излучения, больной или оба одновременно в процессе облучения движутся относитель-

но друг друга по заданной и контролируемой программе. Дистанционные аппараты бывают статические (например, «Агат-С»), ротационные («Агат-Р», «Агат-Р1», «Агат-Р2» - секторное и круговое облучение) и конвергентные («Рокус-М», источник одновременно участвует в двух согласованных круговых движениях во взаимно перпендикулярных плоскостях) (рис. 22).

В России (Санкт-Петербург), например, выпускается гамма-терапевтический ротационно-конвергентный компьютеризированный комплекс «РокусАМ». При работе на этом комплексе можно осуществлять ротационное облучение с перемещением радиационной головки в пределах 0÷360° с открытым затвором и остановкой в заданных позициях по оси ротации с минимальным интервалом в 10°; использовать возможность конвергенции; проводить секторное качание с двумя и более центрами, а также применять сканирующий способ облучения при непрерывном продольном движении лечебного стола с возможностью перемещения радиационной головки в секторе по оси эксцентричности. Необходимыми программами обеспечиваются: дозное распределение в облучаемом пациенте с оптимизацией плана облучения и распечаткой задания на расчеты параметров облучения. С помощью системной программы контролируют процессы облучения, управления, обеспечения безопасности проведения сеанса. Форма полей, создаваемых аппаратом, прямоугольная; пределы изменения размеров поля от 2,0 х 2,0 мм до 220 х 260 мм.

5.1.3. Ускорители частиц

Ускоритель частиц - это физическая установка, в которой с помощью электрических и магнитных полей получают направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц. Основная схема ускорения частиц предусматривает три стадии: 1) формирование пучка и его инжекцию; 2) ускорение пучка и 3) вывод пучка на мишень или осуществление соударения встречных пучков в самом ускорителе.

Формирование пучка и его инжекция. Исходным элементом любого ускорителя служит инжектор, в котором имеется источник направленного потока частиц с низкой энергией (электронов, протонов или других ионов), а также высоковольтные электроды и магниты, выводящие пучок из источника и формирующие его.

Источник формирует пучок частиц, который характеризуется средней начальной энергией, током пучка, его поперечными размерами и средней угловой расходимостью. Показателем качества инжектируемого пучка служит его эмиттанс, то есть произведение радиуса пучка на его угловую расходимость. Чем меньше эмиттанс, тем выше качество конечного пучка частиц с высокой энергией. По аналогии с оптикой ток частиц, деленный на эмиттанс (что соответствует плотности частиц, деленной на угловую расходимость), называют яркостью пучка.

Ускорение пучка. Пучок формируется в камерах или инжектируется в одну или несколько камер ускорителя, в которых электрическое поле повышает скорость, а следовательно, и энергию частиц.

В зависимости от способа ускорения частиц и траектории их движения установки подразделяют на линейные ускорители, циклические ускорители, микротроны. В линейных ускорителях частицы ускоряются в волноводе с помощью высокочастотного электромагнитного поля и движутся прямолинейно; в циклических ускорителях происходит ускорение электронов на постоянной орбите с помощью возрастающего магнитного поля, и движение частиц происходит по круговым орбитам; в микротронах ускорение происходит на спиральной орбите.

Линейные ускорители, бетатроны и микротроны работают в двух режимах: в режиме вывода пучка электронов с диапазоном энергии 5-25 МэВ и в режиме генерирования тормозного рентгеновского излучения с диапазоном энергии 4-30 МэВ.

К циклическим ускорителям относятся также синхротроны и синхроциклотроны, в которых получают пучки протонов и других тяжелых ядерных частиц в диапазоне энергии 100-1000 МэВ. Протонные пучки получены и используются в крупных физических центрах. Для дистанционной нейтронной терапии используют медицинские каналы циклотронов и ядерных реакторов.

Пучок электронов выходит из вакуумного окна ускорителя через коллиматор. В дополнение к этому коллиматору непосредственно около тела пациента существует еще один коллиматор, так называемый аппликатор. Он состоит из набора диафрагм из материалов с малым атомным номером, чтобы уменьшить возникновение тормозного излучения. Аппликаторы имеют разные размеры для установки и ограничения поля облучения.

Электроны высоких энергий меньше рассеиваются в воздухе, чем фотонное излучение, однако требуют дополнительных средств для выравнивания интенсивности пучка в его сечении. К таковым относятся, например, выравнивающие и рассеивающие фольги из тантала и профилированного алюминия, которые помещают за первичным коллиматором.

Тормозное излучение генерируется при торможении быстрых электронов в мишени из материала с большим атомным номером. Пучок фотонов фор-

мируется коллиматором, расположенным непосредственно за мишенью, и диафрагмой, которая ограничивает поле облучения. Средняя энергия фотонов максимальна в переднем направлении. Устанавливаются выравнивающие фильтры, так как мощность дозы в сечении пучка неоднородна.

В настоящее время созданы линейные ускорители с многолепестковыми коллиматорами для проведения конформного облучения (см. рис. 23 на цв. вклейке). Конформное облучение проводится с контролем положения коллиматоров и различных блоков с помощью компьютерного управления при создании фигурных полей сложной конфигурации. Конформное лучевое воздействие требует обязательного применения трехмерного планирования облучения (см. рис. 24 на цв. вклейке). Наличие многолепесткового коллиматора с подвижными узкими лепестками позволяет блокировать часть радиационного пучка и формировать необходимое поле облучения, причем положение лепестков меняется под управлением компьютера. В современных установках можно осуществлять непрерывную регулировку формы поля, то есть можно менять положение лепестков в процессе вращения пучка, чтобы сохранять облучаемый объем. С помощью этих ускорителей появилась возможность создавать максимальное по величине падение дозы на границе опухоли и окружающей здоровой ткани.

Дальнейшие разработки позволили выпустить ускорители для выполнения современного облучения с модулированной интенсивностью. Интенсивно модулированное облучение - облучение, при котором существует возможность создавать не только радиационное поле любой требуемой формы, но и осуществлять облучение с различной интенсивностью во время одного и того же сеанса. Дальнейшие усовершенствования позволили осуществлять радиотерапию, корректируемую по изображениям. Созданы специальные линейные ускорители, в которых планируется высокопрецизионное облучение, при этом лучевое воздействие контролируется и корректируется в процессе сеанса путем осуществления флюороскопии, радиографии и объемной компьютерной томографии на конусном пучке. Все диагностические конструкции вмонтированы в линейный ускоритель.

Благодаря постоянно контролируемой позиции больного на лечебном столе линейного ускорителя электронов и контролю над смещением изодозного распределения на экране монитора уменьшается риск ошибок, связанных с движением опухоли во время дыхания и постоянно происходящего смещения ряда органов.

В России для проведения облучения больных используют различные виды ускорителей. Отечественный линейный ускоритель ЛУЭР-20 (НИИФА, Санкт-Петербург) характеризуется граничной энергией тормозного излучения 6 и 18 МВ и электронов 6-22 МэВ. НИИФА по лицензии фирмы Philips производит линейные ускорители СЛ-75-5МТ, которые укомплектованы дозиметрическим оборудованием и планирующей компьютерной системой. Существуют ускорители PRIMUS (Siemens), многолепестковый ЛУЭ Clinac (Varian) и др. (см. рис. 25 на цв. вклейке).

Установки для адронной терапии. Первый в Советском Союзе медицинский протонный пучок с необходимыми для лучевой терапии параметрами был соз-

дан по предложению В. П. Джелепова на фазотроне 680 МэВ в Объединенном институте ядерных исследований в 1967 г. Клинические исследования проводились специалистами Института экспериментальной и клинической онкологии АМН СССР. В конце 1985 г. в лаборатории ядерных проблем ОИЯИ было завершено создание шестикабинного клинико-физического комплекса, включающего в себя: три протонных канала медицинского назначения для облучения глубокозалегающих опухолей широкими и узкими протонными пучками различной энергии (от 100 до 660 МэВ); π-мезонный канал медицинского назначения для получения и использования в лучевой терапии интенсивных пучков отрицательных π-мезонов с энергиями от 30 до 80 МэВ; канал сверхбыстрых нейтронов медицинского назначения (средняя энергия нейтронов в пучке около 350 МэВ) для облучения больших резистентных опухолей.

Центральным научно-исследовательским рентгенорадиологическим институтом и Петербургским институтом ядерной физики (ПИЯФ) РАН разработан и реализован метод протонной стереотаксической терапии с использованием узкого пучка протонов высокой энергии (1000 МэВ) в сочетании с ротационной техникой облучения на синхроциклотроне (см. рис. 26 на цв. вклейке). Достоинством данного метода облучения «напролет» является возможность четкой локализации зоны облучения внутри объекта, подвергаемого протонной терапии. При этом обеспечиваются резкие границы облучения и высокое отношение радиационной дозы в центре облучения к дозе на поверхности облучаемого объекта. Метод применяется при лечении различных заболеваний головного мозга.

В России в научных центрах Обнинска, Томска и Снежинска ведутся клинические испытания терапии быстрыми нейтронами. В Обнинске в рамках сотрудничества Физико-энергетического института и Медицинского радиологического научного центра РАМН (МРНЦ РАМН) до 2002 г. использовался горизонтальный пучок реактора мощностью 6 МВт со средней энергией нейтронов около 1,0 МэВ. В настоящее время начато клиническое использование малогабаритного нейтронного генератора ИНГ-14.

В Томске на циклотроне У-120 НИИ ядерной физики сотрудниками НИИ онкологии используются быстрые нейтроны со средней энергией 6,3 МэВ. С 1999 г. проводится нейтронная терапия в Российском ядерном центре г. Снежинска с использованием нейтронного генератора НГ-12, дающего пучок нейтронов 12-14 МэВ.

5.2. АППАРАТЫ ДЛЯ КОНТАКТНОЙ ЛУЧЕВОЙ ТЕРАПИИ

Для контактной лучевой терапии, брахитерапии, имеется серия шланговых аппаратов разной конструкции, позволяющих автоматизированным способом размещать источники вблизи опухоли и осуществлять ее прицельное облучение: аппараты серии «Агат-В», «Агат-В3», «Агат-ВУ», «Агам» с источниками γ-излучения 60Со (или 137Cs, 192lr), «Микроселектрон» (Nucletron) с источником 192Ir, «Селектрон» с источником 137Cs, «Анет-В» с источником смешанного гамма-нейтронного излучения 252Cf (см. рис. 27 на цв. вклейке).

Это аппараты с полуавтоматическим многопозиционным статическим облучением одним источником, перемещающимся по заданной программе внутри эндостата. Например, аппарат гамма-терапевтический внутриполостной многоцелевой «Агам» с комплектом жестких (гинекологических, урологических, стоматологических) и гибких (желудочно-кишечных) эндостатов в двух вариантах применения - в защитной радиологической палате и каньоне.

Используются закрытые радиоактивные препараты, радионуклиды, помещенные в аппликаторы, которые вводят в полости. Аппликаторы могут быть в виде резиновой трубки либо специальными металлическими или пластиковыми (см. рис. 28 на цв. вклейке). Существует специальная радиотерапевтическая техника для обеспечения автоматизированной подачи источника в эндостаты и их автоматический возврат в специальный контейнер-хранилище по окончании сеанса облучения.

В комплект аппарата типа «Агат-ВУ» входят метрастаты небольшого диаметра - 0,5 см, что не только упрощает методику введения эндостатов, но и позволяет довольно точно формировать распределение дозы в соответствии с формой и размерами опухоли. В аппаратах типа «Агат-ВУ» три малогабаритных источника высокой активности 60Со могут дискретно перемещаться с шагом в 1 см по траекториям длиной 20 см каждая. Использование малогабаритных источников приобретает важное значение при небольших объемах и сложных деформациях полости матки, так как позволяет избежать осложнений, например перфорации при инвазивных формах рака.

К преимуществам применения 137Cs гамма-терапевтического аппарата «Селектрон» средней мощности дозы (MDR - Middle Dose Rate) относится более длительный, чем у 60Со, период полураспада, что позволяет проводить облучение в условиях почти постоянной мощности дозы излучения. Существенным является также расширение возможностей широкого варьирования пространственным дозным распределением благодаря наличию большого числа излучателей сферической или малогабаритной линейной формы (0,5 см) и возможности чередования активных излучателей и неактивных имитаторов. В аппарате происходит пошаговое перемещение линейных источников в диапазоне мощностей поглощенных доз 2,53-3,51 Гр/ч.

Внутриполостная лучевая терапия с использованием смешанного гамма-нейтронного излучения 252Cf на аппарате «Анет-В» высокой мощности дозы (HDR - High Dose Rate) расширила диапазон применения, в том числе для лечения радиорезистентных опухолей. Комплектация аппарата «Анет- В» метрастатами трехканального типа с использованием принципа дискретного перемещения трех источников радионуклида 252Cf позволяет формировать суммарные изодозные распределения путем использования одной (с неравным временем экспонирования излучателя в определенных позициях), двумя, тремя или более траекториями перемещения источников излучения в соответствии с реальной длиной и формой полости матки и цервикального канала. По мере регрессии опухоли под влиянием лучевой терапии и уменьшения длины полости матки и цервикального канала существует коррекция (уменьшение длины излучающих линий), что способствует снижению радиационного воздействия на окружающие нормальные органы.

Наличие системы компьютерного планирования контактной терапии позволяет проводить клинико-дозиметрический анализ для каждой конкретной ситуации с выбором дозного распределения, наиболее полно соответствующего форме и протяженности первичного очага, что позволяет снижать интенсивность лучевого воздействия на окружающие органы.

Выбор режима фракционирования разовых суммарных очаговых доз при использовании источников средней (MDR) и высокой (HDR) активности основан на эквивалентном радиобиологическом эффекте, сопоставимом с облучением источниками низкой активности (LDR - Low Dose Rate).

Основное преимущество брахитерапевтических установок с шагающим источником 192Ir активностью 5-10 Ки - низкая средняя энергия γ-излучения (0,412 МэВ). Такие источники удобно размещать в хранилищах, а также эффективно использовать различные теневые экраны для локальной защиты жизненно важных органов и тканей. Аппарат «Микроселектрон» c введением источника высокой мощности дозы интенсивно используется в онкогинекологии, при опухолях полости рта, предстательной железы, мочевого пузыря, саркомах мягких тканей. Внутрипросветное облучение проводят при раке легкого, трахеи, пищевода. В аппаратах с введением источника 192Ir низкой активности есть методика, при которой облучение производится импульсами (длительность - 10-15 мин каждый час с мощностью 0,5 Гр/ч). Внедрение радиоактивных источников 125I при раке предстательной железы непосредственно в железу осуществляется под контролем ультразвукового аппарата или компьютерной томографии с оценкой в системе реального времени позиции источников.

Самыми важными условиями, предопределяющими эффективность контактной терапии, являются выбор оптимальной поглощенной дозы и распределение ее во времени. Для лучевого лечения небольших по размеру первичных опухолей и метастазов в головном мозге уже много лет используется стереотаксическое или наружное радиохирургическое воздействие. Оно осуществляется с помощью дистанционного гамма-терапевтического аппарата «Гамма-нож», имеющего 201 коллиматор и позволяющего подвести очаговую дозу, эквивалентную СОД 60-70 Гр за 1-5 фракций (см. рис. 29 на цв. вклейке). Основа точного наведения - стереотаксическая рама, которая фиксируется на голове пациента в самом начале процедуры.

Метод применяется при наличии патологических очагов размером не более 3-3,5 см. Обусловлено это тем, что при больших размерах лучевая нагрузка на здоровую мозговую ткань, а следовательно, и вероятность развития постлучевых осложнений становятся чрезмерно высокими. Лечение проводят в амбулаторном режиме в течение 4-5 ч.

К преимуществам применения «Гамма-ножа» относятся: неинвазивное вмешательство, минимизация побочных эффектов в послеоперационном периоде, отсутствие наркоза, возможность в большинстве случаев избежать лучевого повреждения здоровой мозговой ткани вне видимых границ опухоли.

В системе CyberKnife («Кибер-нож») используется портативный линейный ускоритель 6 МэВ, установленный на контролируемой компьютером роботизированной руке (см. рис. 30 на цв. вклейке). Имеет различные коллиматоры

размером от 0,5 до 6 см. Система контроля по изображению определяет местоположение опухоли и корректирует направление пучка фотонов. Костные ориентиры принимают в качестве системы координат, устраняя необходимость обеспечения полной неподвижности. Роботизированная рука имеет 6 степеней свободы, 1200 возможных позиций.

Планирование лечения производят после подготовки изображений и определения объема опухоли. Специальная система позволяет получать сверхбыструю трехмерную объемную реконструкцию. Происходит мгновенное слияние различных трехмерных изображений (КТ-, МРТ-, ПЭТ-, 3D-ангио- грамм). С помощью роботизированной руки системы CyberKnife, обладающей большой маневренностью, можно планировать и проводить облучение очагов сложной формы, создавать равные распределения дозы по всему поражению или гетерогенные (неоднородные) дозы, то есть проводить необходимое несимметричное облучение опухолей неправильной формы.

Облучение можно осуществлять за одну или несколько фракций. Для эффективных расчетов используют двухпроцессорный компьютер, с помощью которого проводят планирование лечения, трехмерную реконструкция изображений, расчет доз, управление лечением, управление линейным ускорителем и роботизированной рукой, ведение протоколов лечения.

Система контроля по изображению, использующая цифровые рентгеновские камеры, определяет местоположение опухоли и сравнивает новые данные с хранящейся в памяти информацией. При обнаружении смещения опухоли, например при дыхании, роботизированная рука корректирует направление пучка фотонов. В процессе лечения используют специальные формы для тела или маска с целью лица для фиксации. Система позволяет осуществлять многофракционное лечение, так как используется технология контроля точности поля облучения по получаемым изображениям, а не с помощью инвазивной стереотаксической маски.

Лечение проводят в амбулаторных условиях. С помощью системы CyberKnife возможно удаление доброкачественных и злокачественных опухолей не только головного мозга, но и других органов, например спинного мозга позвоночника, поджелудочной железы, печени и легких, при наличии не более трех патологических очагов размером до 30 мм.

Для проведения интраоперационного облучения создаются специальные аппараты, например Movetron (Siemens, Intraop Medical), генерирующий пучки электронов 4; 6; 9 и 12 МэВ, оснащенный рядом аппликаторов, болюсов и других приспособлений. Еще одна установка, Intrabeam PRS, Photon Radiosurgery System (Carl Zeiss), снабжена рядом аппликаторов сферической формы диаметром от 1,5 до 5 см. Аппарат является миниатюрным линейным ускорителем, в котором пучок электронов направляется на золотую пластинку диаметром 3 мм, находящуюся внутри сферического аппликатора, для создания вторичного низкоэнергетического (30-50 кВ) рентгеновского излучения (см. рис. 31 на цв. вклейке). Используется для интраоперационного облучения во время выполнения органосохраняющих вмешательств у больных раком молочной железы, рекомендуется для лечения опухолей поджелудочной железы, кожи, опухолей головы и шеи.

LUXDETERMINATION 2010-2013