Медицинская и биологическая физика: учебник / А. Н. Ремизов. - 4-е изд., испр. и перераб. - 2012. - 648 с. : ил.
|
|
Глава 24. Интерференция и дифракция света. Голография
Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий.
Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит от соотношения длины волны и размеров не-однородностей. Различают с некоторой степенью условности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн.
В главе рассматривается голография как метод, основанный на интерференции и дифракции.
24.1. КОГЕРЕНТНЫЕ ИСТОЧНИКИ СВЕТА. УСЛОВИЯ ДЛЯ НАИБОЛЬШЕГО УСИЛЕНИЯ И ОСЛАБЛЕНИЯ ВОЛН
Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается, когда их частоты одинаковы и направления электрических векторов совпадают. В этом случае амплитуду результирующей волны можно найти по формуле (7.20), которую для напряженности электрического поля запишем в виде:
В зависимости от типа источников света результат сложения волн может быть принципиально различным.
Сначала рассмотрим сложение волн, идущих от обычных источников света (лампа, пламя, Солнце и т.п.). Каждый такой источник представляет совокупность огромного количества излучающих атомов. От-
дельный атом излучает электромагнитную волну приблизительно в течение 10-8 с, причем излучение есть событие случайное, поэтому и разность фаз Δ φ в формуле (24.1) принимает случайные значения. При этом среднее по излучениям всех атомов значение cos Δ φ равно нулю. Вместо (24.1) получаем усредненное равенство для тех точек пространства, где складываются две волны, идущие от двух обычных источников света:
<e2> = <e1 > + <e2 >. (24.2)
Так как интенсивность волны пропорциональна квадрату амплитуды, то из (24.2) имеем условие сложения интенсивностей /1 и /2 волн:
I = /1+ /2 . (24.3)
Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется достаточно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это наблюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в отдельности.
Если Δ φ остается неизменной, наблюдается интерференция света. Интенсивность результирующей волны принимает в разных точках пространства значения от минимального до некоторого максимального.
Интерференция света возникает от согласованных, когерентных источников, которые обеспечивают постоянную во времени разность фаз Δ φ слагаемых волн в различных точках. Волны, отвечающие этому условию, называют когерентными.
Интерференция могла бы быть осуществлена от двух синусоидальных волн одинаковой частоты, однако практически создать такие световые волны невозможно, поэтому когерентные волны получают, расщепляя световую волну, идущую от источника.
Такой способ применяется в методе Юнга. На пути сферической волны, идущей от источника S, устанавливается непрозрачная преграда с двумя щелями (рис. 24.1). Точки волновой поверхности, дошедшей до преграды, становятся центрами когерентных вторичных волн, поэтому щели можно рассматривать как когерентные источники. На экране Э наблюдается интерференция.
Другой метод заключается в получении мнимого изображения S' источника S (рис. 24.2) с помощью специального однослойного зеркала
(зеркало Ллойда). Источники Sи S' являются когерентными. Они создают условия для интерференции волн. На рисунке показаны два интерферирующих луча, попадающие в точку А экрана Э.
Так как время τ излучения отдельного атома ограничено, то разность хода δ лучей 1 и 2 при интерференции не может быть слишком большой, в противном случае в точке А встретятся разные, некогерентные волны. Наибольшее значение δ для интерференции определяется через скорость света и время излучения атома:
δ = с τ = 3 ? 108 . 10-8 = 3 м. (24.4)
Расчет интерференционной картины можно сделать, используя формулу (24.1), если известна разность фаз интерферирующих волн и их амплитуды.
Практический интерес представляют частные случаи: наибольшее усиление волн - максимум интенсивности (max), наибольшее ослабление - минимум интенсивности (min).
Отметим, что условия максимумов и мини-
мумов интенсивностей удобнее выражать не через разность фаз, а через разность хода, так как пути, проходимые когерентными волнами при интерференции, обычно известны. Покажем это на примере интерференции плоских волн I, II, векторы Дкоторых перпендикулярны плоскости чертежа (рис. 24.3).
Колебания вектора И этих волн в некоторой точке В, удаленной на расстояния х1 и х2
соответственно от каждого источника, происходят по гармоническому закону Рис. 24.3
24.2. ИНТЕРФЕРЕНЦИЯ СВЕТА В ТОНКИХ ПЛАСТИНКАХ (ПЛЕНКАХ). ПРОСВЕТЛЕНИЕ ОПТИКИ
Образование когерентных волн и интерференции происходит также при попадании света на тонкую прозрачную пластинку или пленку. Пучок света падает на плоскопараллельную пластинку (рис. 24.4). Луч 1 из этого пучка попадает в точку а, частично отражается (луч 2), частично преломляется (луч am). Преломленный луч испытывает отражение на нижней границе пластинки в точке м. Отраженный луч, преломившись в точке в, выходит в первую среду (луч 3). Лучи 2 и 3 образованы от одного луча, поэтому они когерентны и будут интерферировать. Найдем оптическую разность хода лучей 2 и 3. Для этого из точки в проведем нормаль вс к лучам. От прямой вс до встречи лучей их оптическая разность хода не изменится, линза или глаз не внесут дополнительной разности фаз.
До расхождения в точке а эти лучи в совокупности с другими, не показанными на рис. 24.4, формировали луч 1 и поэтому, естественно, имели одинаковую фазу. Луч 3 прошел расстояние \ам\ + |МВ| в пластинке с показателем преломления п, луч 2 - расстояние \АС| в воздухе, поэтому их оптическая разность хода:
Рис. 24.4
1 Для циклических процессов не имеет значения, уменьшается или увеличивается фаза на π, поэтому равноценно было бы говорить не о потере, а о приобретении полволны, однако такая терминология не употребляется.
Из (24.22) видно, что в проходящем свете интерферируют волны с существенно различными амплитудами, поэтому максимумы и минимумы мало отличаются друг от друга и интерференция слабо заметна.
Проанализируем зависимости (24.17) и (24.18). Если на тонкую плоскопараллельную пластинку под некоторым углом падает параллельный пучок монохроматического излучения, то, согласно этим формулам, пластинка в отраженном свете выглядит яркой или темной.
При освещении пластинки белым светом условия максимума и минимума выполняются для отдельных длин волн, пластинка станет окрашенной, причем цвета в отраженном и проходящем свете будут дополнять друг друга до белого.
В реальных условиях падающий пучок не является строго параллельным и не имеет одного определенного угла падения i. Такой небольшой разброс i при значительной толщине пластины l может приводить к существенному различию левых частей в формулах (24.17) и (24.18) и условия максимума и минимума не будут выдержаны для всех лучей пучка света. Это одно из соображений, поясняющих, почему интерференция может наблюдаться лишь в тонких пластинах и пленках.
При падении монохроматического света на пластинку переменной толщины каждому значению l соответствует свое условие интерференции, поэтому пластинка пересечена светлыми и темными линиями (полосами) - линиями равной толщины. Так, в клине это система параллельных линий (рис. 24.6), в воздушном промежутке между линзой и пластинкой - кольца (кольца Ньютона).
При освещении пластинки переменной толщины белым светом получаются разноцветные пятна и линии: окрашенные мыльные пленки,
Рис. 24.6
пленки нефти и масла на поверхности воды, переливчатые цвета крыльев некоторых насекомых и птиц. В этих случаях не обязательна полная прозрачность пленок.
Особый практический интерес имеет интерференция в тонких пленках в связи с созданием устройств, уменьшающих долю световой энергии, отраженной оптическими системами, и увеличива-
ющих, следовательно, энергию, поступающую к регистрирующим системам - фотопластинке, глазу и т.п. С этой целью поверхности оптических систем покрывают тонким слоем оксидов металлов так, чтобы для некоторой средней для данной области спектра длины волны был минимум интерференции в отраженном свете. В результате возрастет доля прошедшего света. Покрытие оптических поверхностей специальными пленками называют просветлением оптики, а сами оптические изделия с такими покрытиями - просветленной оптикой.
Если на стеклянную поверхность нанести ряд специально подобранных слоев, то можно создать отражательный светофильтр, который вследствие интерференции будет пропускать или отражать определенный интервал длин волн.
24.3. ИНТЕРФЕРОМЕТРЫ И ИХ ПРИМЕНЕНИЕ. ПОНЯТИЕ ОБ ИНТЕРФЕРЕНЦИОННОМ МИКРОСКОПЕ
Интерференцию света используют в специальных приборах - интерферометрах - для измерения с высокой степенью точности длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.
На рис. 24.7 изображена принципиальная схема интерферометра Майкельсона, который относится к группе двухлучевых, так как световая волна в нем раздваивается1 и обе ее части, пройдя разный путь, интерферируют.
Луч 1 монохроматического света от источника S падает под углом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тонким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова. Луч 2 доходит до зеркала I, отражается, преломляется в пластине А и частично выходит из пластины - луч 2'. Луч 3 из точки О идет к зеркалу II, отражается, возвращается к пластине А, где частично отражается, - луч 3' . Лучи 2' и 3' , попадающие в глаз наблюдателя, когерентны, их интерференция может быть зарегистрирована.
Обычно зеркала I и II располагают так, что лучи 2 и 3 от расхождения до встречи проходят пути одинаковой длины. Чтобы и оптическую
1 Строго говоря, вследствие многократных отражений может образоваться более чем два луча, однако их интенсивности незначительны.
Если считать, что смещение на 0,1 полосы (k = 0,1) может быть зафиксировано, то, например, при l = 2,5 см, λ = 500 нм имеем
1 Вследствие разных углов падения лучей из S на пластину А или нестрогой перпендикулярности зеркал I и11 интерференционная картина практически всегда представлена полосами (полосы равного наклона или равной толщины соответственно). Этот вопрос подробно не рассматривается.
Как видно, интерференционный рефрактометр (интерферометр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шестом знаке после запятой.
Интерферешщонньгй рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов.
С помощью интерферометра Майкельсон доказал независимость скорости света от движения Земли, что явилось одним из опытных фактов, послуживших созданию специальной теории относительности.
Сочетание двухлучевого интерферометра и микроскопа, получившее название интерференционного микроскопа, используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.
Принципиальная схема интерференционного микроскопа показана на рис. 24.8. Луч света, как и в интерферометре, в точке А раздваивается, один луч проходит через прозрачный микрообъект М, а другой - вне его. В точке Д лучи соединяются и интерферируют, по результату интерференции судят об измеряемом параметре.
24.4. ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ
Расчет и объяснение дифракции света можно приближенно сделать, используя принцип Гюйгенса-Френеля.
Согласно Гюйгенсу, каждая точка волновой поверхности, которой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 24.9; S1 и S2 - волновые поверхности соответственно в моменты t1 и t2; t2 > t1).
Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции.
В таком обобщенном виде эти идеи получили название принципа Гюйгенса-Френеля.
Для того чтобы определить результат дифракции в некоторой точке пространства, следует рассчитать, согласно принципу Гюйгенса-
Рис. 24.9
Френеля, интерференцию вторичных волн, попавших в эту точку от волновой поверхности. Для волновой поверхности произвольной формы такой расчет достаточно сложен, но в отдельных случаях (сферическая или плоская волновая поверхность, симметричное расположение точки относительно волновой поверхности и непрозрачной преграды) вычисления сравнительно просты. Волновую поверхность при этом разбивают на отдельные участки (зоны Френеля), расположенные определенным образом, что упрощает математические операции.
24.5. ДИФРАКЦИЯ НА ЩЕЛИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ
На узкую длинную щель, расположенную в плоской непрозрачной преграде MN, нормально падает плоскопараллельный пучок монохроматического света (рис. 24.10; \AB | = а - ширина щели; L - собирающая линза, в фокальной плоскости которой расположен экран Э для наблюдения дифракционной картины).
Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптической оси линзы. Дифракция света на щели существенно изменяет явление.
Будем считать, что все лучи пучка света исходят от одного удаленного источника1 и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозможным направлениям. Изобразить все эти вторичные волны невозможно, поэтому на рис. 24.10 показаны только вторичные волны, распространяющиеся под углом α к направлению падающего пучка и нормали решетки. Линза соберет эти волны в точке О' экрана, где и будет наблюдаться их интерференция. (Положение точки О' получают как пересечение с фокальной плоскостью побочной оси СО'линзы, проведенной под углом α.)
Чтобы узнать результат интерференции вторичных волн, проделаем следующие построения. Проведем перпендикуляр AD к направлению
1 Практически точечный источник можно расположить в фокусе линзы, не показанной на рис. 24.10, Так что от линзы будет распространяться параллельный пучок когерентных волн.
Рис. 24.10
пучка вторичных волн. Пути всех вторичных волн от AD до О' будут тау-тохронными, линза не внесет добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к AD, будет сохранена и в точке О'.
Разобьем BD на отрезки, равные λ/2. В случае, показанном на рис. 24.10, получено три таких отрезка: \ВВ2 \ = \В2В1 \ = \B1D \ = λ/2. Проведя из точек В2 и В1 прямые, параллельные AD, разделим АВ на равные зоны Френеля: \ АА1\ = | АА2| = |А2В \. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет λ/2.
Например, вторичная волна, идущая от точки А2 в выбранном направлении, проходит до точки О'расстояние на λ/2 больше, чем волна, идущая от точки А1, и т.д. Следовательно, вторичные волны, идущие от двух соседних зон Френеля, погасят друг друга, так как различаются по фазе на π.
Число зон, укладывающихся в щели, зависит от длины волны λ и угла α. Если щель АВ разбить при построении на нечетное число зон Френеля, a BD - на нечетное число отрезков, равных λ/2, то в точке О' наблюдается максимум интенсивности света:
Направление, соответствующее углу α = 0, также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе.
Если щель АВ разбить на четное число зон Френеля, то наблюдается минимум интенсивности света:
Рис. 24.11
Таким образом, на экране э получится система светлых (максимум) и темных (минимум) полос, центрам которых соответствуют условия (24.26) или (24.27), симметрично расположенных влево и вправо от центральной (α = 0), наиболее яркой, полосы. Интенсивность i остальных максимумов убывает по мере удаления от центрального максимума (рис. 24.11).
Если щель освещать белым светом, то на экране э [см. (24.26), (24.27)] образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света, так как при α = 0 усиливаются все длины волн света.
Дифракция света, как и интерференция, связана с перераспределением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей приложение светового потока, но перераспределителем этого потока в пространстве.
Чтобы понять влияние соотношения между шириной щели и длиной волны на возможность наблюдения дифракционной картины, рассмотрим некоторые частные случаи:
24.6. ДИФРАКЦИОННАЯ РЕШЕТКА. ДИФРАКЦИОННЫЙ СПЕКТР
Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга щелей.
Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места - щели - будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а) и ее условное обозначение (б) показаны на
рис. 24.12.
Расстояние между центрами соседних щелей называют постоянной или периодом дифракционной решетки:
где а - ширина щели; b - ширина промежутка между щелями.
Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всем возможным направлениям, будут интерферировать, формируя дифракционную картину.
Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 24.13). Выберем некоторое направление вторичных волн под углом α относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода δ = \А'В'\. Такая же разность хода будет для вторичных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие
где k = 0, 1, 2 - порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, α = 0). Равенство (24.29) является основной формулой дифракционной решетки.
Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом α от соответственных точек соседних щелей, равна λ/N, т.е.:
где N - число щелей дифракционной решетки. Этой разности хода δ [см. (24.9)] отвечает разность фаз Δφ = 2π /N.
Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2π/Ν, от третьей - 4π/Ν, от четвертой - 6π/Ν и т.д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического (или магнитного) поля, угол между любыми соседними из которых есть 2π/Ν, равна нулю. Это означает, что условие (24.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей δ = 2(λ/Ν) или разности фаз Δφ = 2(2π/Ν) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т.д.
В качестве иллюстрации на рис. 24.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: Е1, Е2и т.д. - векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т.д. щеле й.
Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а), 120° (б), 180° (в), 240° (г) и 300° (д).
Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется Ν - 1 добавочных минимумов, удовлетворяющих условию:
Рис. 24.15
При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (24.29)]. В этом случае k указывает порядок спектра.
24.7. ОСНОВЫ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА
Основная формула (24.29) дифракционной решетки может быть использована не только для определения длины волны, но и для решения обратной задачи - нахождения постоянной дифракционной решетки по известной длине волны. Такая скромная применительно к обычной дифракционной решетке задача подводит к практически важному вопросу - измерению параметров кристаллической решетки посредством дифракции рентгеновских лучей, что является содержанием рентгено-структурного анализа.
Пусть совмещены две дифракционные решетки, штрихи которых перпендикулярны. Для решеток выполняются условия главных максимумов:
Углы α1 и α2 отсчитываются во взаимно перпендикулярных направлениях. В этом случае на экране появится система пятен, каждому из которых соответствует пара значений k1 и k2 или α1 и α2. Таким образом, и здесь можно найти с1 и с2 по положению дифракционных пятен.
Усложняя задачу, логично считать, что дифракционная картина позволит измерить параметры и для трехмерной периодической структуры.
Естественной объемной периодической структурой являются кристаллы, крупные молекулы и т.п. Вторичные волны в кристалле возникают в результате взаимодействия первичных лучей с электронами атомов.
Для отчетливого наблюдения дифракционной картины должно выполняться определенное соотношение между длиной волны и параметром периодической структуры (см. 24.5). Оптимальным условиям соответствует примерно одинаковый порядок этих величин. Учитывая, что расстояние между рассеивающими центрами (атомами) в кристалле (~10-10 м) приблизительно равно длине волны рентгеновского излуче-
ния, можно считать, что кристалл для этих лучей является трехмерной дифракционной решеткой.
На рис. 24.19 пунктиром показаны две соседние кристаллографические плоскости. Взаимодействие рентгеновского излучения с атомами и возникновение вторич-
ных волн можно рассматривать упрощенным методом как отражение от плоскостей.
Пусть на кристалл под углом скольжения θ падают рентгеновские лучи 1 и 2; 1' и 2' - отраженные (вторичные) лучи, СЕ и CF - перпендикуляры к падающим и отраженным лучам соответственно. Разность хода отраженных лучей 1' и 2':
где l - межплоскостное расстояние.
Максимумы интерференции при отражении возникают в случае, когда разность хода равна целому числу длин волн:
Это формула Вульфа-Брэггов.
При падении монохроматического рентгеновского излучения на кристалл под разными углами наибольшее отражение (максимум) будет для углов, отвечающих условию (24.42). При наблюдении под определенным углом скольжения пучка рентгеновского излучения со сплошным спектром максимум дифракций будет выполняться для длин волн, удовлетворяющих условию Вульфа-Брэггов.
П. Дебаем и П. Шеррером был предложен метод рентгенострук-турного анализа, основанный на дифракции монохроматических рентгеновских лучей в поликристаллических телах (обычно спрессованные порошки). Среди множества кристаллитов всегда найдутся такие, для которых одинаковы /, θ и к, причем эти величины соответствуют формуле Вульфа-Брэггов. Ораженный луч 2 (максимум) составит угол 2θ с па-
дающим рентгеновским лучом L (рис. 24.20, а). Так как условие (24.42) одинаково для многих кристаллов, по-разному ориентированных, то дифрагированные рентгеновские лучи образуют в пространстве конус, вершина которого лежит в исследуемом объекте, а угол раствора равен 4θ (рис. 24.20, б). Другой совокупности величин l, θ и к, удовлетворяющих условию (24.42), будет соответствовать дру-
гой конус. На фотопленке рентгеновские лучи образуют рентгенограмму (дебаеграмму) в виде окружностей (рис. 24.21) или дуг.
Дифракцию рентгеновских лучей наблюдают также при рассеянии их аморфными твердыми телами, жидкостями и газами. В этом случае на рентгенограмме получаются широкие и размытые кольца.
В настоящее время широко применяют рентгеноструктурный анализ биологических молекул и систем: на рис. 24.22 показаны рентгенограммы белков. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК и были удостоены Нобелевской премии (1962). Использование дифракции рентгеновских лучей от кристаллов для исследования их спектрального состава относится к области рентгеновской спектроскопии.
24.8. ПОНЯТИЕ О ГОЛОГРАФИИ И ЕЕ ВОЗМОЖНОМ ПРИМЕНЕНИИ В МЕДИЦИНЕ
Голография1 - метод записи и восстановления изображения, основанный на интерференции и дифракции волн.
Идея голографии была впервые высказана Д. Габором в 1948 г., однако ее практическое использование оказалось возможно после появления лазеров.
1 Голография (грен.) - метод полной записи.
Изложение голографии уместно начать сравнением с фотографией. При фотографировании на фотопленке фиксируется интенсивность световых волн, отраженных предметом. Изображение в этом случае является совокупностью темных и светлых точек. Фазы рассеиваемых волн не регистрируются, и, таким образом, пропадает значительная часть информации о предмете.
Голография позволяет фиксировать и воспроизводить более полные сведения об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используют как вспомогательные устройства, и сигнальную, которая появляется при рассеянии (отражении) части опорной волны предметом и содержит соответствующую информацию о нем.
Интерференционную картину, образованную сложением сигнальной и опорной волн и зафиксированную на светочувствительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной.
Покажем на некоторых примерах, как получается голограмма и восстанавливается изображение.
Голограмма плоской волны
В этом случае на голограмме фиксируется плоская сигнальная волна /, попадающая под углом α1 на фотопластинку ф (рис. 24.23).
Опорная волна II падает нормально, поэтому во всех точках фотопластинки одновременно ее фаза одинакова. Фазы сигнальной волны вследствие ее наклонного падения различны в разных точках светочувствительного слоя. Из этого следует, что разность фаз между лучами опорной и сигнальной волн зависит от места встречи этих лучей на фотопластинке и, согласно условиям максимумов и минимумов интерференции, полученная голограмма будет состоять из темных и светлых полос.
Пусть ав (рис. 24.23, б) соответствует расстоянию между центрами ближайших темных или светлых интерференционных полос. Это означает, что фазы точек а и в в сигнальной волне отличаются на 2π. Построив нормаль ас к ее лучам (фронт волны), нетрудно видеть, что фазы точек а и с одинаковы. Различие фаз точек в и с на 2π означает, что \ВС\ = λ. Из прямоугольного аавс имеем
Итак, в этом примере голограмма подобна дифракционной решетке, так как на светочувствительной поверхности зарегистрированы области усиленных (максимум) и ослабленных (минимум) колебаний, расстояние ав между которыми определяется по формуле (24.43).
Так как сигнальная волна образуется при отражении части опорной от предмета, то понятно, что в данном случае предметом является плоское зеркало или призма, т.е. такие устройства, которые преобразуют плоскую опорную волну в плоскую сигнальную (технические подробности на рис. 24.23, a не показаны).
Направив на голограмму опорную волну i (рис. 24.24), осуществим дифракцию (см. 24.6). Согласно (24.29), первые главные максимумы (k = 1) соответствуют направлениям
Из (24.46) видно, что направление волны i' (рис. 24.24), дифрагированной под углом a1, соответствует сигнальной: так восстанавливают волну, отраженную (рассеянную) предметом. Волна i'' и волны остальных главных максимумов (на рисунке не показаны) также воспроизводят информацию, зафиксированную в голограмме.
Голограмма точки
Одна часть опорной волны II попадает на точечный объект А (рис. 24.25, а) и рассеивается от нее в виде сферической сигнальной волны I, другая часть плоским зеркалом З направляется на фотопластинку Ф, где эти волны интерферируют. Источником излучения является лазер Л. На рис. 24.25, б схематически изображена полученная голограмма.
Хотя в данном примере сигнальная волна является сферической, можно с некоторым приближением применить формулу (24.45) и заметить, что по мере увеличения угла α1 (см. рис. 24.23, а) уменьшается расстояние АВ между соседними полосами. Нижние дуги на голограмме (рис. 24.25, б) расположены более тесно.
Если вырезать из голограммы узкую полоску, показанную пунктирными линиями на рис. 24.25, б, то она будет подобна узкой дифракционной решетке, постоянная которой уменьшается в направлении оси X. На такой решетке отклонение вторичных волн, соответствующих первому главному максимуму, возрастает по мере увеличения координаты х щели [см. (24.41)]: с становится меньше, | sina| - больше.
Таким образом, при восстановлении изображения плоской опорной волной дифрагированные волны уже не будут плоскими. На рис. 24.26 показаны волна I', формирующая мнимое изображение А' точки А, и волна создающая действительное изображение А".
Так как рассеянные предметом волны попадают совместно с опорной волной во все точки голограммы, то все ее участки содержат информацию о предмете, и для восстановления изображения не обязательно использовать полностью всю голограмму. Следует, однако, заметить,
что восстановленное изображение тем хуже, чем меньшую часть голограммы для этого применяют. Из рис. 24.26 видно, что мнимое и действительное изображения образуются и в том случае, если восстановление осуществляют, например, нижней половиной голограммы (штриховые линии), однако изображение при этом формируется меньшим количеством лучей.
Любой предмет является совокупностью точек, поэтому рассуждения, приведенные для одной точки, могут быть обобщены и на голографию любого предмета. Голографические изображения объемны, и их зрительное восприятие ничем не отличается от восприятия соответствующих предметов1: ясное видение разных точек изображения осуществляется посредством адаптации глаза (см. 26.4); при изменении точки зрения изменяется перспектива, одни детали изображения могут заслонять другие.
При восстановлении изображения можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инфракрасными и рентгеновскими), можно восстановить видимым светом. Так как условия отражения и поглощения электромагнитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать ее как метод внутривидения, или интроскопии2.
Особо интересные и важные перспективы открываются в связи с ультразвуковой голографией. Получив голограмму в ультразвуковых механических волнах, можно восстановить ее видимым светом. Ультразвуковая голография в перспективе может быть использована в медицине для рассматривания внутренних органов человека с диагностической целью, определения пола внутриутробного ребенка и т.д. Учитывая большую информативность этого метода и существенно меньший вред ультразвука по сравнению с рентгеновским излучением, можно ожи-
1 Некоторое отличие обусловлено одноцветностью изображения, которое неизбежно при записи и восстановлении монохроматической волной.
2 Intro (лат.) - внутри и skopeo (лат.) - смотрю. Визуальное наблюдение объектов, явлений и процессов в оптически непрозрачных телах и средах, а также в условиях плохой видимости.
дать, что в будущем ультразвуковая голографическая интроскопия заменит традиционную рентгенодиагностику.
Еще одно медико-биологическое приложение голографии связано с голографическим микроскопом. Его устройство основано на том, что изображение предмета получается увеличенным, если голограмму, записанную с плоской опорной волной, осветить расходящейся сферической волной.
В развитие голографии внес вклад советский физик, лауреат Ленинской премии Ю.Н. Денисюк, разработавший метод цветной голографии.
Сейчас трудно оценить все возможности применения голографии: кино, телевидение, запоминающие устройства и т.д. Несомненно лишь, что этот метод является одним из величайших изобретений нашего времени.