Медицинская и биологическая физика: учебник / А. Н. Ремизов. - 4-е изд., испр. и перераб. - 2012. - 648 с. : ил.
|
|
Глава 10. Механические свойства твердых тел и биологических тканей
Характерным признаком твердого тела является способность сохранять форму. Твердые тела можно разделить на кристаллические и аморфные. Так же как и в гл. 9, рассматриваемый материал имеет отношение к реологии и биореологии.
10.1. КРИСТАЛЛИЧЕСКИЕ И АМОРФНЫЕ ТЕЛА.
ПОЛИМЕРЫ
Отличительным признаком кристаллического состояния служит анизотропия - зависимость физических свойств (механических, тепловых, электрических, оптических) от направления.
Причина анизотропии кристаллов заключается в упорядоченном расположении атомов или молекул, из которых они построены, проявляемом в правильной внешней огранке отдельных монокристаллов. Однако, как правило, кристаллические тела встречаются в виде поликристаллов - совокупности множеств сросшихся между собой, беспорядочно ориентированных отдельных маленьких кристалликов (кристаллиты). В этом случае анизотропия наблюдается в пределах кристаллитов.
Упорядоченность в расположении атомов или молекул кристалла обусловлена тем, что они размещаются в узлах геометрически правильных структур, образуя кристаллическую (пространственную) решетку. В зависимости от природы частиц, находящихся в узлах, и характера сил взаимодействия различают четыре типа кристаллических решеток: ионные, атомные, металлические и молекулярные.
В узлах кристаллической решетки ионного кристалла находятся ионы разных знаков. Силы взаимодействия между ними в основном куло-новские. Такой кристалл в целом рассматривается как одна молекула. Узлы решетки атомного кристалла заняты нейтральными атомами, между которыми действуют ковалентные связи. Во всех узлах металлической решетки расположены положительные ионы металлов. Между
ними хаотически движутся электроны. Система ионов и электронов создает металлическую связь. В узлах кристаллической решетки молекулярного кристалла находятся ориентированные определенным образом молекулы, удерживаемые на своих местах силами межмолекулярного взаимодействия.
С энергетической точки зрения идеальный кристалл противоположен идеальному газу. В идеальном газе абсолютное значение энергии взаимодействия много меньше кТ - средней энергии хаотического теплового движения. Наоборот, в кристалле вследствие больших сил взаимодействия абсолютное значение энергии взаимодействия много больше кТ. Поэтому тепловое движение в кристаллах не может разрушить связь между частицами, вследствие чего они совершают малые колебания около положений равновесия. Взаимодействие между частицами любого вида в кристалле выражается зависимостью потенциальной энергии ЕП от расстояния r между ними (рис. 10.1). Кривая не симметрична относительно минимума. Расстояние r0 между взаимодействующими частицами соответствует минимуму потенциальной энергии при Т = 0 К. Пусть при температуре Т1 суммарная (кинетическая и потенциальная) энергия равна Е1. Это означает, что частица колеблется между точками А1 и В1. Среднее расстояние между двумя частицами r1 = (|О А1| + |O 51|)/2. При Т2 > Т1 энергия частицы равна Е2 > Е1 и колеблется между А2 и B2. Среднее расстояние между частицами равно r2 = (|ОА2| + |OB2|)/2. Ввиду того что потенциальная кривая асимметрична, средние расстояния между частицами по мере нагревания увеличиваются: r0< r1 < r2 < r3<... при 0 К < Т 1< Т2 < Т3 < что и обусловливает тепловое расширение тел.
Основная макроскопическая особенность аморфных тел заключается в естественной изотропии их свойств и отсутствии определенной точки плавления, что обусловлено внутренним строением тел.
Главной особенностью внутреннего строения тел, находящихся в
аморфном состоянии, является отсутствие дальнего порядка, характерного для кристаллического состояния, т.е. строгой повторяемости в расположении атомов или групп атомов во всех направлениях вдоль всего тела.
Вместе с тем у вещества в аморфном состоянии существует ближний порядок, т.е. некоторый порядок в расположении смежных частиц. С расстоянием этот порядок уменьшается.
Обладая меньшей упорядоченностью внутреннего строения, аморфные тела в одинаковых условиях имеют большие, чем кристаллы, удельный объем, энтропию и внутреннюю энергию.
Достаточно равновесное состояние эти тела образуют только при высокой температуре и малом давлении, что связано с установлением определенного расположения частиц и расстояний между ними. В соответствии с этим аморфные тела в зависимости от скорости внешнего воздействия могут оказаться упругими или текучими. Так, например, если кусок вара положить в сосуд, то по истечении большого промежутка времени он примет форму сосуда, т.е. проявит свойства текучести. Если же этот кусок ударить молотком, то он расколется, как хрупкое тело.
Аморфное состояние свойственно веществам самой различной химической природы. При малом давлении и высокой температуре вещества в этом состоянии весьма подвижны: низкомолекулярные являются жидкостями, высокомолекулярные оказываются в высокоэластическом состоянии. С понижением температуры и ростом давления подвижность аморфных веществ уменьшается и все они становятся твердыми телами. Твердое аморфное состояние иначе называют стеклообразным.
Полимерами называют вещества, молекулы которых представляют собой длинные цепи, составленные из большого числа атомов или атомных группировок, соединенных химическими связями. Особенность химического строения полимеров обусловливает и их особые физические свойства.
Наиболее резко отличаются полимеры от низкомолекулярных веществ в механических свойствах. Известно, что для твердых тел характерны большие прочности при малых обратимых деформациях. Жидкости обладают способностью к неограниченной деформации при весьма малой прочности. Полимеры - это материалы, механические свойства которых сочетают свойства твердых тел и жидкостей; они достаточно прочны и вместе с тем способны к достаточно большим обратимым деформациям.
К полимерным материалам относят почти все живые и растительные материалы, такие, как шерсть, кожа, рог, волос, шелк, хлопок, натуральный каучук и т.п., а также всякого рода синтетические материалы - синтетический каучук, пластмассы, волокна и др.
Большинство природных полимерных материалов представляет собой белковые вещества; простые белки - альбумин, глобулин; сложные - казеин, кератины и коллаген. В агар-агаре содержится до 85% углеводов, главным образом полисахаридов, которые также являются полимерами.
Кроме механических полимеры обладают и другими особыми свойствами. Так, например, их растворы имеют повышенную вязкость;
упругость пара растворителя над раствором меньше, а осмотическое давление больше, чем должно быть для идеальных растворов. Полимеры способны сильно набухать в жидкостях.
Длинноцепочечное строение молекул полимеров способствует образованию пленок и волокон.
В настоящее время полимеры все шире используются в качестве диэлектриков.
Простейшим органическим полимером является полиэтилен, полимерная цепь или макромолекула которого составлена из многократно повторяющихся мономерных звеньев, образующихся при соединении молекул этилена:
Полиэтилен - представитель линейных полимеров. Линейными называют полимеры, макромолекулы которых состоят из длинных одномерных цепей (рис. 10.2, а: А - мономерное звено). Разветвленный полимер, кроме основной цепи, имеет боковые ответвления - боковые цепи (рис. 10.2, б).
Полимеры, построенные из длинных цепей, соединенных друг с другом в пространственную сетку, являются сетчатыми, или пространственными, а построенные из одинаковых полимеров - гомополиме-рами. Полимерные соединения, цепи которых состоят из различных мономерных звеньев, относят к гетерополимерам.
Макромолекула полимера не является жесткой. Вследствие теплового движения или под действием внешнего поля ее пространственная форма может изменяться. Эти изменения называют конфирмационными превращениями.
Предельно гибкой является свободносочлененная цепь (рис. 10.3). В такой цепи углы между валентными связями не фиксированы и вра-
щение вокруг них свободное. В реальных полимерных цепях валентные углы α имеют определенное значение (рис. 10.4). Это приводит к зависимости положения одного звена цепи от положения предыдущего. Такая цепь принимает меньшее число конформации, чем свободносочлененная, но и она способна сильно изгибаться.
Макромолекулы в результате теплового движения звеньев принимают
разнообразные конформации, из них крайними, с одной стороны, являются жесткая прямая палочка, с другой стороны, предельно гибкая цепь, свернувшаяся в клубок (глобула).
Макромолекулы могут достигать огромных размеров, обладая относительной молярной массой от нескольких тысяч до сотен миллионов и даже миллиарда. Из-за большого размера молекул полимера температура кипения его чрезвычайно высока (необходима очень большая энергия для испарения огромных молекул). Отсюда у всех полимеров температура разложения ниже температуры кипения и газовое состояние у них не реализуется.
Следовательно, полимеры находятся в конденсированном состоянии: жидком или твердом. Среди твердых полимеров следует различать аморфные и кристаллические.
Аморфный полимер в высокоэластическом состоянии может сильно деформироваться (до 1000%), его деформация обратима, необратимое течение отсутствует. В этом смысле высокоэластическое состояние - промежуточное между жидким и твердым. Высокоэластическое состояние полимера возникает вследствие гибкости его макромолекул.
Макромолекулы во всех состояниях полимеров всегда более или менее упорядочены, что приводит к надмолекулярным структурам. Известно, что полимеры характеризуются большим многообразием надмолекулярных структур не только в кристаллическом, но и в аморфном состоянии. Первичными элементами этих структур являются полимерные молекулы либо свернутые в глобулы, либо развернутые в линейную макромолекулу. При кон-
такте глобул могут образоваться глобулярные структуры, содержащие большое число молекул, иногда до 1000. При контакте развернутых макромолекул возникают продолговатые пачки (рис. 10.5), которые имеют флуктуационную природу: в одних местах исчезают, в других - появляются, но вместе с тем существуют довольно длительно.
Простейшие первичные надмолекулярные структуры - пачки полимерных цепей - наблюдают как в некристаллических, так и в кристаллических полимерах. При кристаллизации пачки складываются в «ленты». На рис. 10.6 изображены выпрямленная (а) и сложенная в ленту (б) пачки. Стремление к уменьшению поверхностного натяжения приводит к складыванию лент в пластины (рис. 10.7) и образованию сферолитов (рис. 10.8) или единичных кристаллов (рис. 10.9, единичный кристалл вируса некроза табака).
Многочисленные надмолекулярные структуры разделены академиком В.А. Каргиным на четыре основных типа: глобулярный (свернуты одиночные молекулы или группы молекул), полосатый (структуры всех полимеров в высокоэластическом состоянии), фибриллярный (линейные пачки или их совокупности, сохраняющие продолговатую форму), крупноструктурный (сферолиты, единичные кристаллы и т.п.).
Формы и размеры надмолекулярных структур оказывают большое влияние на прочность полимеров. Так, например, образец с малыми сферолитами обладает высокой прочностью и хорошими эластическими свойствами, образцы же с крупными сферолитами разрушаются хрупко.
Как видно из вышеизложенного, полимерные материалы характеризуются широким набором ценных физико-химических свойств, что позволяет использовать их в различных областях науки и техники, а также в медицине.
Из полимеров типа полиэтилена, поливинилхлорида и др., легко обрабатываемых давлением, изготовляют различные медицинские инструменты и приспособления.
Тефлон, капрон и лавсан, милар, силастиковый полимер обладают высокой химической стойкостью, вследствие чего их используют при
изготовлении протезов внутренних частей организма (кровеносных сосудов, клапанов сердца, сухожилий, вживляемых глазных линз и т.п.). Раствор полимера поливинилпирролидона - хороший заменитель кровяной плазмы.
В настоящее время в искусственной почке применяются целлофановые мембраны. Такие мембраны задерживают белок и клеточные элементы крови. Проводятся эксперименты по созданию искусственных легких с силиконовыми мембранами, обладающими высокой пропускной способностью по отношению к кислороду и диоксиду углерода.
Большой интерес для медицины представляют тканевые клеи, например алкил-а-цианокрилаты, й-бутил-а-цианокрилат, быстро поли-меризующиеся в пленку, которые используют для закрытия ран без наложения швов.
К высокомолекулярным соединениям относятся также биополимеры, являющиеся структурной основой всех живых организмов и играющие главную роль в процессе их жизнедеятельности, - это белки, нуклеиновые кислоты, полисахариды, гликопротеиды, липопротеиды, гликолипиды и др.
10.2. ЖИДКИЕ КРИСТАЛЛЫ
Жидкими кристаллами называют вещества, которые обладают свойствами и жидкостей, и кристаллов.
По своим механическим свойствам эти вещества похожи на жидкости - они текут. По оптическим свойствам жидкие кристаллы ведут себя как анизотропные тела - кристаллы: вращают плоскость поляризации, обнаруживают двойное лучепреломление и т.п. Чаще всего жид-
кокристаллические свойства вещество проявляет в определенном температурном интервале, выше которого оно находится в аморфно-жидком состоянии, ниже - в твердокристаллическом.
Двойственность физических свойств обусловлена внутренним строением жидких кристаллов. Взаимное расположение молекул в них является промежуточным между аморфным состоянием, в котором полностью отсутствует дальний порядок, и твердым кристаллическим, в котором существует как дальний порядок в расположении центров молекул, так и упорядоченность в ориентации молекул. Жидкокристаллическое состояние наблюдается у веществ, молекулы которых имеют вытянутую форму в виде палочки или удлиненной пластинки. Такая форма молекул приводит к возможности их упорядочения.
По характеру молекулярной упорядоченности различают нематические и смектические жидкие кристаллы. В нематических жидких кристаллах молекулы ориентированы параллельно (рис. 10.10, а), но их центры расположены беспорядочно. Смектические кристаллы состоят из параллельных слоев, в которых молекулы упорядочены (рис. 10.10, б). Особый клас составляют кристаллы холестерическо-го1 типа. Молекулы в таких кристаллах, как и в смектических, собраны в слои. Однако внутри каждого слоя параллельное расположение осей молекул напоминает нематическое состояние (рис. 10.10, в). Между слоями также имеется упорядочение: при переходе к соседним слоям изменяется на небольшой угол общая ориентация данного слоя по отношению к общей ориентации предыдущего слоя (наблюдается винтовая закручен-ность молекулярной структуры).
Молекулярная структура холестерических жидких кристаллов очень чувствительна к любому малейшему внешнему воздействию. Малое возмущение может нарушить слабые межмолекулярные силы, что приводит к заметным изменениям оптических свойств. Так, температура оказывает большое влияние на цвет кристалла: в зависимости от температу-
1 Их строение характерно для соединений, содержащих холестерин.
ры он может быть любого цвета - от фиолетового до красного. Такие свойства жидких кристаллов начинают использовать для измерения изменений температуры различных участков тел.
В медицине это позволяет фиксировать расположение вен, артерий и других образований, имеющих иную теплоотдачу, чем окружающие среды.
Жидкокристаллические вещества также применяются в различных температурно-чувствительных сигнальных устройствах.
Молекулярная структура жидких кристаллов, а следовательно, и их оптические свойства изменяются в присутствии ничтожных количеств паров некоторых химических веществ. Это позволяет использовать жидкие кристаллы для обнаружения следов этих веществ.
На изменении оптических свойств жидких кристаллов под воздействием электрического поля основано применение их в приборах и часах в качестве цифровых индикаторов.
Исследование жидких кристаллов в живых организмах - огромная, малоизученная, но чрезвычайно перспективная область.
10.3. МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ
Изменение взаимного расположения точек тела, которое приводит к изменению его формы и размеров, называют деформацией.
Деформации могут быть вызваны внешними воздействиями (механическими, электрическими или магнитными) или изменением температуры тела. Здесь рассматриваются деформации, возникающие при действии сил на тело.
В твердых телах деформацию называют упругой, если после прекращения действия силы она исчезает. Если же деформация сохраняется и после прекращения внешнего воздействия, то ее называют пластической. Промежуточный случай, т.е. неполное исчезновение деформации, принято называть упругопластической деформацией.
Наиболее простым видом деформации является растяжение (сжатие). Оно, например, возникает в стержне (рис. 10.11) при действии силы, направленной вдоль его оси. Если стержень длиной l при этом удлинился на Δι, то ε = Al/l является мерой деформации растяжения и называется относительным удлинением.
Другим видом деформации является сдвиг (рис. 10.12). Сила, касательная к одной из граней прямоугольного параллелепипеда, вызывает его деформацию, превращая в косоугольный параллелепипед (см. штри-
ховые линии на рисунке). Угол γ называют углом сдвига, a tgy - относительным сдвигом. Так как обычно угол γ мал, то можно считать tgγ = γ.
При действии на тело внешней деформирующей силы расстояние между атомами (ионами) изменяется. Это приводит к возникновению внутренних сил, стремящихся вернуть атомы (ионы) в первоначальные положения. Мерой этих сил является механическое напряжение (или просто напряжение).
Непосредственно напряжение не измеряется. В ряде случаев его можно вычислить через внешние силы, действующие на тело. Косвенно напряжение можно определить по некоторым физическим эффектам (см., например, 25.5).
Применительно к деформации растяжения напряжение σ можно выразить как отношение силы к площади поперечного сечения стержня (рис. 10.11, б):
Для деформации сдвига напряжение τ выражают как отношение силы к площади грани, к которой сила касательна (рис. 10.12, б). В этом случае τ называют касательным напряжением:
Упругие малые деформации подчиняются закону Гука, согласно которому напряжение пропорционально деформации. Для двух рассмотренных случаев (растяжение, сжатие) это аналитически записывается так:
где Е - модуль Юнга; G - модуль сдвига.
Экспериментальная кривая растяжения приведена на рис. 10.13. Участок ОА соответствует упругим деформациям, точка В - пределу упругости, характеризующему то максимальное напряжение, при котором еще не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации). Горизонтальный участок CD кривой растяжения соответствует пределу текучести - напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяемое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности.
Между упругими свойствами кристаллических мономеров и полимерных материалов существует огромная и принципиальная разница, например в пределах прочности сталь разрывается уже при растяжении на 0,3%, а мягкие резины можно растягивать до 300%. Это связано с качественно другим механизмом упругости высокомолекулярных соединений.
Как уже говорилось, при деформации кристаллических твердых тел, например стали, силы упругости всецело определяются изменением межатомных расстояний. Структура высокомолекулярных соединений не регулярна. Они состоят из очень длинных гибких молекул, которые причудливо изогнуты, части молекул находятся в хаотическом тепловом движении так, что их форма и длина все время изменяются. Но в каждый данный момент большинство молекул в недеформированном образце имеет длину, близкую к наиболее вероятной. При приложении нагрузки к материалу (рис. 10.14, а) его молекулы выпрямляются в соответствующем направлении и длина образца увеличивается (рис. 10.14, б). После снятия нагрузки вследствие хаотического теплового движения длина каждой молекулы восстанавливается и образец укорачивается.
Упругость, свойственную полимерам, называют каучукоподобной эластичностью (высокой эластичностью или высокоэластичностью).
Приведем данные по механическим свойствам некоторых материалов (табл. 10.1).
Таблица 10.1
Различие между деформацией кристаллических мономеров и полимерных материалов проявляется и во временной ее зависимости. Дело в том, что практически все материалы обладают ползучестью: под действием постоянной нагрузки происходит их деформация. В полимерах распрямление молекул при нагрузке материала и скольжение макромолекул происходят более длительно, чем, например, ползучесть в металлах. В какой-то мере при ползучести процессы, происходящие в полимере, соответствуют течению вязкой жидкости. Сочетание вязкого течения и высокой эластичности позволяет называть деформацию, характерную для полимеров, вязкоупругой. Упругие и вязкие свойства тел удобно моделировать. Это дает возможность нагляднее представить механические свойства биологических объектов (см. 10.4).
В качестве модели упругого тела (упругой деформации) выберем пружину (рис. 10.15, а), малая деформация которой соответствует закону Гука.
Моделью вязкого тела является поршень с отверстиями, движущийся в цилиндре с вязкой жидкостью (рис. 10.15, б).
Силу сопротивления среды в этом случае примем пропорциональной скорости перемещения поршня [см. (7.32)]:
Преобразуем уравнение (10.2), основываясь на аналогии. Вместо силы сопротивления запишем напряжение (Fcoiip -- σ), т.е. силу, отнесенную к единице площади, коэффициент трения, характеризующий свойство среды оказывать сопротивление движущемуся в ней
трех элементов позволяет создавать модели, наиболее полно отражающие механические свойства тел и, в частности, биологических объектов.
Моделирование механических свойств тел широко используется в реологии. Основная задача реологии - это выяснение зависимости напряжения от относительной деформации: σ = f(e); напряжения от времени (релаксация напряжения): σ = f(t) при e = const; относительной деформации от времени (ползучесть): e = f(t); при σ = const.
10.4. МЕХАНИЧЕСКИЕ СВОЙСТВА БИОЛОГИЧЕСКИХ ТКАНЕЙ
Под механическими свойствами биологических тканей понимают две их разновидности. Одна связана с процессами биологической подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечиваются АТФ, их природа рассматривается в курсе биохимии. Условно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность - пассивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям.
Как технический объект биологическая ткань - композиционный материал, он образован объемным сочетанием химически разнородных компонентов. Механические свойства биологической ткани отличаются от механических свойств каждого компонента, взятого в отдельности. Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов.
Костная ткань
Кость - основной материал опорно-двигательного аппарата. В упрощенном виде можно считать, что 2/з массы компактной костной ткани (0,5 объема) составляет неорганический материал, минеральное вещество кости - гидроксилапатит 3Са3(РО4)2-Са(ОН)2. Это вещество представлено в форме микроскопических кристалликов. В остальном кость состоит из органического материала, главным образом коллагена (высокомолекулярное соединение, волокнистый белок, обладающий высокой эластичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).
Плотность костной ткани - 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма.
Композиционное строение кости придает ей нужные механические свойства: твердость, упругость и прочность. Зависимость σ = f(e) для компактной костной ткани примерно имеет вид, показанный на рис. 10.18, т.е. подобна аналогичной зависимости для твердого тела (см. рис. 10.13); при небольших деформациях выполняется закон Гука. Модуль Юнга - около 10 ГПа, предел прочности - 100 МПа. Полезно эти данные сопоставить с данными для капрона, армированного стеклом (см. табл. 13, заметно хорошее соответствие).
Примерный вид кривых ползучести компактной костной ткани приведен на рис. 10.19. Участок ОА соответствует быстрой деформации, АВ - ползучести. В момент t1, соответствующий точке В, нагрузка была снята. ВС соответствует быстрой деформации сокращения, CD - обратной ползучести. В результате даже за длительный период образец кости не восстанавливает своих прежних размеров, сохраняется некоторая остаточная деформация e^.
Для этой зависимости можно предложить следующую примерную модель (рис. 10.20, а). Временная зависимость относительной деформации показана на рис. 10.20, б. При действии постоянной нагрузки мгновенно растягивается пружина 1 (участок ОА), затем вытягивается поршень (релаксация АВ), после прекращения нагрузки происходит быстрое сжатие пружины 1 (ВС), а пружина 2 втягивает поршень в прежнее положение (обратная релаксация CD). В предложенной модели не предусматривается остаточная деформация.
Схематично можно заключить, что минеральное содержимое кости обеспечивает быструю деформацию, а полимерная часть (коллаген) определяет ползучесть.
Если в кости или в ее механической модели быстро создать постоянную деформацию, то скачкообразно возникает и напряжение (участок ОА на рис. 10.20, в).
На модели это означает растяжение пружины 1 и возникновение в ней напряжения. Затем (участок АВ) эта пружина будет сокращаться, вытягивая поршень и растягивая пружину 2, напряжение в системе будет убывать. Однако даже спустя значительное время сохранится остаточное напряжение
σост.
Для модели это означает, что не возникнет при постоянной деформации такой ситуации, чтобы пружины вернулись в недеформированные состояния.
Кожа
Она состоит из волокон коллагена, эластина (так же как и коллаген, волокнистый белок) и основной ткани - матрицы. Коллаген составляет около 75% сухой массы, а эластин - около 4%. Примерные данные по механическим свойствам приведены в табл. 10.2.
Эластин растягивается очень сильно (до 200-300%), примерно как резина.
Коллаген может растягиваться до 10%, что соответствует капроновому волокну.
Таблица 10.2
Из сказанного ясно, что кожа является вязкоупругим материалом с высокоэластическими свойствами, она хорошо растягивается и удлиняется.
Мышцы
В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.
Релаксация напряжения в гладких мышцах соответствует модели Максвелла (см. рис. 10.15, в; 10.16, б). Поэтому гладкие мышцы могут значительно растягиваться без особого напряжения, что способствует увеличению объема полых органов, например мочевого пузыря.
Механическое поведение скелетной мышцы соответствует модели, представленной на рис. 10.20, а. При быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается до аост (рис. 10.20, б).
Зависимость σ = f(e); для скелетной мышцы нелинейна (рис. 10.21). Анализ этой кривой показывает, что примерно до ε = 25% в портняжной мышце лягушки механизм деформации обусловлен распрямлением молекул коллагена (см. 10.3). При большей деформации происходит увеличение межатомных расстояний в молекулах.
Ткань кровеносных сосудов (сосудистая ткань)
Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы: отношение эластина к коллагену в общей сонной артерии - 2:1, а в бедренной артерии - 1:2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.
При детальном исследовании механических свойств сосудистой ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно, однако, рассматривать деформацию сосуда в целом как результат действия давления изнутри на упругий цилиндр.
Рассмотрим цилиндрическую часть кровеносного сосуда длиной /, с толщиной стенок h и радиусом внутренней части r. Сечения вдоль и поперек оси цилиндра показаны на рис. 10.22. Две половины цилиндрического сосуда взаимодействуют между собой по сечениям стенок цилиндра (заштрихованные области на рис. 10.22, а). Общая площадь это-
го «сечения взаимодействия» равна 2hl. Если в сосудистой стенке существует механическое напряжение σ, то сила взаимодействия двух половинок сосуда равна:
Эта сила уравновешивается силами давления на цилиндр изнутри (они показаны стрелками на рис. 10.22, б). Силы направлены под разными углами к горизонтальной плоскости (на рисунке). Для того чтобы найти их равнодействующую, следует просуммировать горизонтальные проекции. Однако проще найти равнодействующую силу, если умножить давление на проекцию площади полуцилиндра на вертикальную плоскость 00'. Эта проекция равна 2rl. Тогда выражение для силы через давление имеет вид:
Это уравнение Ламе.
Будем считать, что при растяжении сосуда объем его стенки не изменяется (площадь стенки возрастает, а толщина убывает), т.е. не изменяется площадь сечения стенки сосуда (рис. 10.22, б):
С учетом (10.13) преобразуем (10.12):
Уравнения (10.20) и (10.21) могут быть использованы для нахождения связи между давлением и радиусом кровеносного сосуда, а также модуля упругости. При решении вопроса о распространении пульсовой волны количественные соотношения получаются также на основе этих уравнений.
В заключение отметим разделы и направления медицины, для которых особо важно иметь представление о пассивных механических свойствах биологических тканей:
• в космической медицине, так как человек находится в новых, экстремальных, условиях обитания;
• результативность спортивных достижений и ее возрастание побуждают спортивных медиков обращать внимание на физические возможности опорно-двигательного аппарата человека;
• механические свойства тканей необходимо учитывать гигиенистам при защите человека от действия вибраций;
• в протезировании при замене естественных органов и тканей искусственными также важно знать механические свойства и параметры биологических объектов;
• в судебной медицине следует знать устойчивость биологических структур по отношению к различным деформациям;
• в травматологии и ортопедии вопросы механического воздействия на организм являются определяющими.
Этот перечень не исчерпывает значения материала, изложенного в настоящей главе, для врачебного образования.