Оглавление

Биология: учебник: в 2 т. / под ред. В. Н. Ярыгина. - 2011. - Т. 2. - 560 с. : ил.
Биология: учебник: в 2 т. / под ред. В. Н. Ярыгина. - 2011. - Т. 2. - 560 с. : ил.
Раздел VI. БИОГЕОЦЕНОТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИЗНИ. Глава 16. ВОПРОСЫ ОБЩЕЙ ЭКОЛОГИИ

Раздел VI. БИОГЕОЦЕНОТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИЗНИ. Глава 16. ВОПРОСЫ ОБЩЕЙ ЭКОЛОГИИ

Живые существа, населяющие территории с разнообразными условиями обитания, испытывают на себе влияние последних и сами оказывают действие на окружающую среду. Закономерности взаимоотношений организмов и среды их обитания, законы развития и существования биогеоценозов, представляющих собой комплексы взаимодействующих живых и неживых компонентов в определенных участках биосферы, изучает специальная биологическая наука - экология.

Экологические закономерности проявляются на уровне особи, популяции особей, биоценоза, биогеоценоза. Биоценозом (сообществом организмов) называют пространственно ограниченную ассоциацию взаимодействующих растений и животных, в которой доминируют определенные виды или физический фактор. Предметом экологии, таким образом, являются физиология и поведение отдельных организмов в естественных условиях обитания (аутэкология), рождаемость, смертность, миграции, внутривидовые отношения (динамика популяций), межвидовые отношения, потоки энергии и круговороты веществ (синэкология).

К основным методам экологии относят полевые наблюдения, эксперименты в природных условиях, моделирование процессов и ситуаций, встречающихся в популяциях и биоценозах.

Среда - это совокупность элементов, которые действуют на особь в месте ее обитания. Элемент среды, способный оказывать прямое влияние на живой организм хотя бы на одной из стадий индивидуального развития, называют экологическим фактором. В соответствии с распространенной и удобной классификацией экологические факторы делят на биотические и абиотические, хотя это деление до некоторой степени условно. Абиотический фактор - температура - может, например, регулироваться изменением состояния популяции организмов. Так, при температуре воздуха ниже 13 °С интенсифицируется двигательная активность пчел, что повышает температуру в улье до 25-30 °С. Учитывая социальную сущность человека, проявляющуюся в его активном отношении к природе, целесообразно выделение также антропогенных

экологических факторов. По мере роста народонаселения и технической вооруженности человечества удельный вес антропогенных экологических факторов неуклонно возрастает.

Согласно другой классификации, различают первичные и вторичные периодические экологические факторы. С действием первичных факторов жизнь столкнулась на ранних стадиях эволюции. К ним относят температуру, изменение положения Земли по отношению к Солнцу. Благодаря им в эволюции возникла суточная, сезонная, годичная периодичность многих биологических процессов. Вторичные периодические факторы - производные первичных. Например, уровень влажности зависит от температуры, поэтому в холодных областях планеты атмосфера содержит меньше водяных паров.

Непериодические факторы действуют на организм или популяцию эпизодически, внезапно. К ним относят стихийные силы природы - извержение вулкана, ураган, удар молнии, наводнение, а также хищника, настигающего жертву, и охотника, поражающего цель. Благодаря многообразию экологических факторов наблюдается закономерное расселение видов по планете. Колебания интенсивности их действия проявляются в исчезновении некоторых видов с определенных территорий, изменении плотности популяций, показателей рождаемости, смертности. Под влиянием экологических факторов в эволюции сложились такие адаптивные модификации, как зимняя или летняя спячка, диапауза.

Любая особь, популяция, сообщество испытывают одновременное воздействие многих факторов, но лишь некоторые из них жизненно важны. Такие факторы называют лимитирующими, их отсутствие или наличие в концентрации ниже и выше критических уровней делает невозможным освоение среды организмами определенного вида. Благодаря наличию лимитирующих экологических факторов для каждого биологического вида существуют оптимум и пределы выносливости. Так, устрицы наилучшим образом развиваются в воде с содержанием солей 1,5-1,8%. При снижении концентрации солей до 1,0% более 90% личинок погибает в течение двух недель, а при концентрации 0,25% все поголовье их гибнет за одну неделю. Повышение концентрации соли по сравнению с оптимальной величиной также оказывает неблагоприятное действие на устриц. В общем виде зависимость выживаемости организмов определенного вида от интенсивности лимитирующего экологического фактора представлена графически на рис. 16.1.

Рис. 16.1. Интенсивность действия экологического фактора и выживаемость вида

Взаимодействие нескольких экологических факторов усложняет картину. Так, некоторые виды тропических орхидей в природе при относительно высокой температуре воздуха растут только в тени. При искусственном понижении температуры окружающего воздуха они прекрасно развиваются в условиях прямой инсоляции.

Способность вида осваивать разные среды обитания выражается величиной экологической валентности. Виды с малой экологической валентностью называют стенотопными, с большой - эвритопны-ми. Эвритопные виды могут быть представлены несколькими экоти-пами - разновидностями, приспособленными к выживанию в средах, различающихся по некоторым факторам. Так, сложноцветное растение тысячелистник Achillea millefolium образует равнинные и горные экоти-пы. При выращивании горного экотипа в равнинных условиях растения сохраняют присущие им особенности на протяжении ряда поколений.

16.1. БИОГЕОЦЕНОЗ - ЭЛЕМЕНТАРНАЯ ЕДИНИЦА БИОГЕОЦЕНОТИЧЕСКОГО УРОВНЯ ОРГАНИЗАЦИИ ЖИЗНИ

Всю полноту взаимодействий и взаимозависимости живых существ и элементов неживой природы в области распространения жизни отражает концепция биогеоценоза.

Биогеоценоз - динамическое и устойчивое сообщество растений, животных и микроорганизмов, находящееся в постоянном взаимодействии и непосредственном контакте с компонентами атмосферы, гидросферы и литосферы. Биогеоценоз состоит из биотической (биоценоз) и абиотической (экотоп) частей, которые связаны непрерывным обменом веществом, и представляет собой энергетически и вещественно открытую систему (рис. 16.2). В него поступают энергия Солнца, минеральные вещества почвы, газы атмосферы, вода. Из него выделяются тепло, кислород, углекислый газ, биогенные вещества, переносимые водой, перегной.

Основы межвидовых связей в биогеоценозах могут быть разными. Непищевые взаимоотношения часто зависят от образа жизни организмов. Так, бобры используют стволы деревьев разных видов в первую очередь как строительный материал при возведении плотин на реках и поэтому обитают только в лесной зоне. Дятлы используют дупла старых деревьев для гнездования и поэтому не встречаются в степях и пустынях. Тенелюбивые и влаголюбивые мхи, папоротники и травянистые цветковые растения растут только под пологом лесов и парков, созда-

Рис. 16.2. Биогеоценоз - открытая экологическая система

ющих затененность и высокую влажность почвы и воздуха. Москиты, обитающие в степных и пустынных ландшафтах, наиболее жаркие часы суток проводят в норах грызунов.

Почти все птицы для строительства гнезд используют биологический материал разного происхождения: шерсть, перья, мох, листья и стебли цветковых растений разных видов. Но гораздо более известны и важны межвидовые взаимоотношения, основанные на участии их в пищевых цепях и сетях питания (см. рис. 16.3 и 16.4).

В единой системе биогеоценоза организмы разных видов и уровней организации в процессе метаболизма совместно осуществляют безотходный круговорот веществ, обеспечивая тем самым устойчивость и целостность экологической системы.

Биогеоценоз содержит следующие обязательные компоненты (рис. 16.3):

• абиотические неорганические и органические вещества среды;

• автотрофные организмы - продуценты биотических органических веществ;

• гетеротрофные организмы (консументы) - потребители готовых органических веществ первого (растительноядные животные) и следующих (плотоядные животные) порядков;

• детритоядные организмы - редуценты-разрушители, разлагающие органическое вещество.

Как через любую диссипативную (т.е. рассеивающую энергию) систему, через биогеоценоз протекает регулируемый поток энергии. Эта энергия затрачивается на обеспечение постоянного круговорота веществ, поддержание целостности системы и обеспечение ее эволюции. Энергия проходит через серию трофических уровней, являющихся звеньями цепей питания.

Первичный источник энергии - солнечное излучение, энергия которого составляет 4,6 ? 1026 Дж/с (1,1 ? 1026 кал/с), 1/2 000 000 этого количества энергии достигает поверхности Земли, при этом 1,0-2,0% ассимилируется растениями, 30-70% поглощенной энергии используется ими для обеспечения собственной жизнедеятельности и синтеза органических веществ.

Энергия, накопленная в растительной биомассе, составляет чистую первичную продукцию биогеоценоза. Фитобиомасса используется в качестве источника энергии и материала для создания биомассы потребителей первого порядка - растительноядных животных и далее по пищевой цепи. Количество энергии, расходуемой на поддержание

Рис. 16.3. Живые организмы - компоненты биогеоценоза

собственной жизнедеятельности, в цепи трофических уровней растет, а продуктивность падает. Обычно продуктивность последующего трофического уровня составляет не более 5-20% продуктивности предыдущего. Это находит отражение в соотношении на планете биомасс растительного и животного происхождения.

Так, суммарная биомасса организмов, обитающих на суше, составляет примерно 3 ? 1012 т. Лишь 1-3% этого количества - зообиомасса.

Рис. 16.4. Пищевая сеть в биогеоценозе смешанного леса

Масса животного вещества, приходящегося на людей, составляет около 0,0002% от суммарной массы живого вещества планеты. Объем энергии, необходимый для обеспечения жизнедеятельности организма, растет с повышением уровня морфофункциональной организации. Соответственно, количество биомассы, создаваемой на более высоких трофических уровнях, снижается. Например, в разных биогеоценозах 95-99,5% зообиомассы приходится на беспозвоночных животных.

Прогрессивное снижение ассимилированной энергии в ряду трофических уровней находит отражение в структуре экологических пирамид.

Продукция живого вещества растительноядными животными составляет в данном случае 12,5%, а человеком - 0,6% продукции растений. Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается уменьшением биомассы и численности особей. Таким образом, пирамиды биомассы и численности организмов для данного биогеоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.

Размеры биогеоценозов, выделяемых экологами, различны. Совокупности определенных биогеоценозов образуют главные природные экосистемы, имеющие глобальное значение в обмене энергии и вещества на планете. К ним относят:

• тропические леса;

• леса умеренной климатической зоны;

• пастбищные земли (степь, саванна, тундра, травянистые ландшафты);

• пустыни и полупустыни;

• озера, болота, реки и их дельты;

• горы;

• острова;

• моря.

Биоценоз - главный компонент биогеоценоза, от состояния которого зависят его существование и изменения во времени. Биоценозы отличаются по видовому составу, и важнейшей их характеристикой является постоянное прямое или опосредованное взаимодействие популяций организмов друг с другом. Влияние любой популяции распространяется до экологически отдаленных элементов биоценоза через взаимодействие с конкурентами, хищниками, жертвами. Так, насекомоядные птицы не оказывают прямого действия на растения, но, снижая численность насекомых, питающихся листьями или опыляющих растения, они тем самым воздействуют на воспроизведение фитобиомас-сы. Последнее существенно для состояния популяций и продуктивности растительноядных животных, хищников, паразитов. Экологические влияния отдельной популяции распространяются в биоценозе во всех направлениях, но по мере прохождения последовательных звеньев в цепи взаимодействия интенсивность влияния ослабевает.

Показатели структуры и функционирования биоценозов - их видовой состав, число трофических уровней, первичная продуктивность,

интенсивность потока энергии и круговоротов веществ. Структура биоценозов складывается в процессе эволюции, причем каждый вид организмов эволюционирует таким образом, чтобы занять в биоценозе определенное место. Совместное историческое развитие многих видов на одной территории способствует их специализации к использованию лишь части наличных пищевых ресурсов и ограниченному местообитанию. В результате достигается состояние взаимоприспособленности видов друг к другу, или коадаптации, обязательного условия стабильности биоценоза.

В качестве примера рассмотрим ситуацию, возникшую в искусственном озере Гатун, которое образовалось в начале XX в. в зоне Панамского канала. В течение нескольких десятилетий биоценоз озера отличался стабильностью благодаря коадаптации организмов основной пищевой цепи: фитопланктон - зоопланктон - планктоноядные рыбы. Последние, поедая зоопланктон, снижали его численность, что способствовало поддержанию количества фитопланктона на достаточно высоком уровне. В 1967 г. случайно в озеро была интродуцирована хищная, прожорливая рыба туканаре. Она быстро сократила численность планкто-ноядных рыб, что привело к размножению зоопланктона и сокращению количества фитопланктона. Одновременно снизилась численность обитающих на озере крачек и зимородков, питающихся рыбой, и повысилась численность комаров, личинок которых прежде поедала рыба.

Таким образом, появление нового вида вызвало серьезные нарушения в экономике биоценоза озера и временно дестабилизировало его структуру. В дальнейшем, по мере развития коадаптаций, при измененном видовом составе стабильность биоценоза может восстановиться. Состояние коадаптации достигается даже между видами-антагонистами: хищником и жертвой, хозяином и паразитом.

Кроме межвидовых взаимоотношений в форме различных коадап-таций в стабильном существовании экологических систем большое значение имеют и непищевые взаимодействия одного и того же вида. Известно, что чем больше яиц отложила птица и чем больше ее птенцов развились и приобрели самостоятельность, тем больше шансов у этой птицы погибнуть в этом же году, и наоборот: самки, оказавшиеся менее плодовитыми, имеют больше шансов дожить до следующего года и успешно оставить потомство. Эксперименты показали, что если в гнездо птицы добавить несколько дополнительных яиц, то в будущем году она отложит достоверно меньшее число яиц, и наоборот: изъятие нескольких яиц из кладки приводит к повышению плодовитости птицы

в будущем году. Из этого можно сделать вывод о том, что в популяциях разных видов, включенных в экологические системы, разными путями срабатывают сложные регуляторные механизмы, обеспечивающие сохранение целостности биогеоценозов.

Наиболее устойчивы биогеоценозы, характеризующиеся:

• большим видовым разнообразием;

• наличием неспециализированных видов;

• слабой степенью отграниченности от соседних экологических систем;

• большой биомассой.

Действительно, разнообразие видового состава биоценозов обеспечивает реальное существование не столько цепей, сколько сетей питания, поскольку на каждом трофическом уровне находятся организмы разных видов, способные заместить друг друга в выполнении функций биотического круговорота веществ при изменении экологической ситуации (см. рис. 16.4).

Неспециализированные виды, способные обитать в меняющихся условиях и использовать разные источники питания, объединяют разные трофические уровни экологической пирамиды, упрочивая тем самым ее структуру. Обмен видами между соседними биоценозами может обеспечить восстановление даже существенно нарушенного экологического равновесия. Большое количество вещества, накопленного в виде биомассы, обладает свойствами буферности, обеспечивая систему веществом и энергией при длительном действии неблагоприятных экологических факторов, например, во время полярной ночи в высоких широтах или при длительных сезонных наводнениях в странах с мус-сонным климатом.

Обычно поддержание экологического баланса в биогеоценозах в большой степени зависит от так называемых ключевых видов. Так, хищные морские звезды, поддерживающие относительно невысокий уровень численности прикрепляющихся ко дну моллюсков, которыми они питаются, создают благоприятные условия для расселения многочисленных видов других придонных организмов. В отсутствие морских звезд моллюски одного-двух видов занимают огромные территории морского дна и не позволяют другим видам эффективно расселяться.

Не менее важную роль в преобразовании и формировании новых экологических систем играют бобры. Строя плотины на ручьях и малых реках, они создают искусственные слабопроточные водоемы. В них поселяются разнообразные и многочисленные виды растений и живот-

ных, которые до расселения бобров на данной территории существовать не могли. При этом одновременно наблюдается и исчезновение видов, местообитанием которых являются ручьи и небольшие речки.

Тесные коадаптации популяций разных видов, входящих в состав биоценоза, проявляются, как и любые другие эволюционные события, на фенотипическом уровне, но по существу они - результат микро- и макроэволюционных процессов, затрагивающих в первую очередь их генофонды. Поэтому экологический гомеостаз базируется на коадапта-циях популяционных генофондов и проявляется как выражение свойства наследственности на биогеоценотическом уровне. Приобретение экологической системой новых видов или их утрата, изменение скорости и объема круговорота веществ, связанное с изменениями генофондов популяций биоценоза, а также приспособление его в целом как системы к меняющимся экологическим факторам есть проявление свойства изменчивости. Другие характеристики живых систем - обмен веществ, выступающий в биогеоценозе в виде биогенного круговорота, и самовоспроизведение, в результате которого на базе исходного биогеоценоза возможно возникновение дочерних экосистем, - также проявляются на этом уровне организации жизни. Благодаря этому в биогеоценозах реализуется и такое фундаментальное свойство живого, как способность эволюционировать.

16.2. ЭВОЛЮЦИЯ БИОГЕОЦЕНОЗОВ

Любая территория, пригодная к жизни по набору абиотических факторов, заселяется. Этот процесс называют сукцессией. В соответствии с трофической структурой биоценоза первостепенная роль в освоении новых местообитаний принадлежит растительным организмам. Развитие растительности в местообитаниях, где прежде растений не было, обозначают как первичную сукцессию, а в местах с предсуществовавшим, но разрушенным растительным покровом - как вторичную.

В процессе сукцессии изменяются видовой состав биоценоза и характеристики местообитания. Вслед за растениями в сукцессию вовлекаются представители животного мира, а развивающийся биогеоценоз становится все более богатым видами; цепи питания в нем усложняются, разветвляются и превращаются в сети питания. Среди животных растет число всеядных видов, активизируется функция редуцентов, возвращающих органическое вещество из почвы в состав биомассы, благодаря чему ее объем неуклонно растет.

Сукцессия завершается климаксом - образованием сообщества, видовой состав которого в дальнейшем изменяется незначительно. Скорость сукцессии по мере приближения к состоянию климакса снижается. Процесс практически прекращается, когда добавление или исключение видов не приводит к изменению среды развивающегося биогеоценоза, т.е. между элементами биоценоза и физической средой по достижении климакса устанавливается равновесие.

Из наблюдений за заселением песчаных дюн или вновь образованных потоков лавы в результате первичной сукцессии, а также вырубок или заброшенных пашен в процессе вторичной сукцессии следует, что для достижения состояния климакса требуются сотни и тысячи лет. Климаксные сообщества, возникающие в результате сукцессии разных местообитаний, различаются по производимой биомассе: тропические леса, леса умеренной зоны, болота. Максимальный объем биомассы ограничивается климатом соответствующего района.

Примером сукцессии служит зарастание некрупных пресноводных водоемов. Последовательное отмирание и придонное отложение мелких планктонных организмов, донных водорослей, водоплавающих растений, сопровождаемые сменой преобладающих видов животных и микроорганизмов, обусловливают трансформацию водных биогеоценозов в биогеоценозы болотного типа.

Климаксные сообщества на протяжении определенного времени характеризуются состоянием устойчивого равновесия, что проявляется в их способности возвращаться в исходное состояние после кратковременных внешних воздействий, изменяющих условия существования, и противостоять этим воздействиям. Так, в одном из климаксных биогеоценозов при временном понижении осадков на 50% по сравнению с их обычным количеством продукция фитобиомассы снижалась на 25%, а численность популяций растительноядных - всего на 10%. Устойчивость подобных сообществ зависит как от гомеостатических реакций организмов и популяций, так и от условий физической среды. В приведенном примере она могла быть обусловлена запасом влаги в почве и реакцией растений на засуху. Несмотря на высокую степень устойчивости биогеоценозов, глобальное изменение условий среды, связанное с эпохальными сменами климата, приводит и к эволюции климаксных экологических систем.

В настоящее время под действием антропогенных факторов кли-максные экологические системы сменяются менее устойчивыми либо в

связи с прямым их разрушением, либо за счет загрязнения окружающей среды.

Так, в районе Москвы почвенно-климатические условия соответствуют развитию биогеоценозов дубовых лесов, господствовавших здесь до XV-XVIII вв. Вырубка дубрав и хозяйственное освоение территорий привели к появлению на их месте обедненных биогеоценозов березово-осиновых и еловых лесов. Участки древних дубрав сохранились местами в старинных парках и на границе Москвы в ее северо-восточной части, но поддержание состояния относительного равновесия в них требует уже значительных материальных затрат.

Взаимная адаптация популяций разных видов, включенных в состав эволюционирующего биогеоценоза, представляет собой процесс их соотносительной эволюции, сопровождающейся направленными изменениями аллелофондов этих популяций. В результате изменяется система аллелофондов биогеоценоза в целом как уровня организации жизни.

Таким образом, эволюция биогеоценоза базируется на эволюции отдельных популяций разнообразных организмов, а результатом ее является возникновение сообщества, включающего в себя новые виды, каждый из которых выполняет присущую только ему функцию в целостной системе.

Вопросы для самоконтроля

1. Понятия «среда обитания» и «экологические факторы».

2. Классификация экологических факторов.

3. Биогеоценоз, его структура и функционирование.

4. Общие свойства биогеоценозов: устойчивость и способность эволюционировать.

5. Закономерности эволюции биогеоценозов. Экологическая сукцессия.

Биология: учебник: в 2 т. / под ред. В. Н. Ярыгина. - 2011. - Т. 2. - 560 с. : ил.

LUXDETERMINATION 2010-2013