Глава 4. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Глава 4. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

4.1. ПРОСТЕЙШИЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ 4.1.1. Понятие неопределенного интеграла

В дифференциальном исчислении рассматривалась задача нахождения производной или дифференциала по заданной функции y = F(x), т. е. необходимо было найти f (x) = F'(x) или dF(x) = F'(x) dx = f (x) dx. Поставим обратную задачу: восстановить продифференцированную функцию, т. е., зная производную f(x) (или дифференциал f(x)dx), найти такую функцию F(x), чтобы F'(x) = f (x). Эта задача оказывается значительно более трудной, чем задача дифференцирования. Например, пусть известна скорость перемещения точки, а надо найти закон

ее перемещения S = S(t), причемДля решения подобных

задач вводятся новые понятия и действия.

Определение. Дифференцируемая функция F(x) называется первообразной для функции f (x) на (a; b), если F'(x) = f (x) на (a; b).

Например, для f (x) = x2 первообразная так как

для f (x) = cos x первообразной будет F(x) = sin x, потому что F'(x) = (sin x)' = cos x, что совпадает с f (x).

Всегда ли существует первообразная для заданной функции f (x)? Да, если эта функция непрерывна на (a; b). Кроме того, первообразных бесчисленное множество, и отличаются они друг от друга только постоянным слагаемым. Действительно, sin x + 2, sin x - 2, sin x + c - все эти функции будут первообразными для cos x (производная от постоянной величины равна 0) - рис. 4.1.

Определение. Выражение F(x) + C, где С - произвольная постоянная величина, определяющее множество первообразных для функции f (x), называется неопределенным интегралом и обозначается символом , т. е., где знак - знак неопределенного

интеграла, f (x) - называется подынтегральной функцией, f (x)dx - подынтегральньм выражением, х - переменной интегрирования.

Рис. 4.1. Пример семейства интегральных кривых

Определение. Операция нахождения первообразной по заданной производной или дифференциалу называется интегрированием этой функции.

Интегрирование - действие, обратное дифференцированию, его можно проверить дифференцированием, причем дифференцирование однозначно, а интегрирование дает ответ с точностью до постоянной. Придавая постоянной величине С конкретные значенияпо-

лучим различные функции

каждая из которых задает на координатной плоскости кривую, называемую интегральной. Все графики интегральных кривых сдвинуты параллельно относительно друг друга вдоль оси Oy. Следовательно, геометрически неопределенный интеграл представляет собой семейство интегральных кривых.

Итак, введены новые понятия (первообразной и неопределенного интеграла) и новое действие (интегрирование), но как все-таки находить первообразную? Чтобы легко было ответить на этот вопрос, надо в первую очередь составить и выучить наизусть таблицу неопределенных интегралов от основных элементарных функций. Она получается в результате обращения соответствующих формул дифференцирования. Например, если

Обычно в таблицу включаются некоторые интегралы, полученные после применения простейших методов интегрирования. Эти формулы помечены в табл. 4.1 символом «*» и доказаны при дальнейшем изложении материала.

Таблица 4.1. Таблица основных неопределенных интегралов

Формула 11 из табл. 4.1 может иметь вид,

так как. Аналогичное замечание и по поводу фор-

мулы 13:

4.1.2. Свойства неопределенных интегралов

Рассмотрим простейшие свойства неопределенного интеграла, которые позволят интегрировать не только основные элементарные функции.

1. Производная от неопределенного интеграла равна подынтегральной функции:

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению:

3. Неопределенный интеграл от дифференциала функции равен этой функции, сложенной с произвольной постоянной:

Пример 1. Пример 2.

4. Постоянный множитель можно выносить за знак интеграла: Пример 3.

5. Интеграл от суммы или разности двух функций равен сумме или разности интегралов от этих функций:

Пример 4.

Формула интегрирования остается справедливой, если переменная интегрирования является функцией: если то

- произвольная функция, имеющая непрерывную производную. Это свойство называется инвариантностью.

Пример 5., поэтому

Сравнить с

Универсального способа интегрирования не существует. Далее будут приведены некоторые методы, позволяющие вычислить заданный интеграл с помощью свойств 1-5 и табл. 4.1.

4.1.3. Непосредственное интегрирование

Этот метод заключается в прямом использовании табличных интегралов и свойств 4 и 5. Примеры.

4.1.4. Метод разложения

Этот метод заключается в разложении подынтегральной функции в линейную комбинацию функций с уже известными интегралами.

Примеры.

4.1.5. Метод подведения под знак дифференциала

Для приведения данного интеграла к табличному бывает удобно сделать преобразования дифференциала.

1. Подведение под знак дифференциала линейной функции

отсюдав частности, dx = d(x + b),

дифференциал не меняется, если к переменной прибавить

или отнять постоянную величину. Если переменная увеличивается в несколько раз, то дифференциал умножается на обратную величину. Примеры с решениями.

Проверим формулы 9*, 12* и 14* из табл. 4.1, используя метод подведения под знак дифференциала:

что и требовалось доказать.

2. Подведение под знак дифференциала основных элементарных функций:

Замечание. Формулы 15* и 16* могут быть проверены дифференцированием (см. свойство 1). Например,

а это и есть подынтегральная функция из формулы 16*.

4.1.6. Метод выделения полного квадрата из квадратичного трехчлена

При интегрировании выражений типа или

выделением полного квадрата из квадратного трехчлена

ax2 + bx + c удается свести их к табличным 12*, 14*, 15* или 16* (см. табл. 4.1).

Поскольку в общем виде эта операция выглядит сложнее, чем на самом деле, ограничимся примерами.

Примеры.

1.

Решение. Здесь мы выделяем полный квадрат из квадратного трехчлена x2 + 6x + 9 = (x2 + 6x + 9) - 9 + 5 = (x + 3)2 - 4 , а затем используем метод подведения под знак дифференциала.

Рассуждая аналогично, можно вычислить следующие интегралы:

2. 3.

На заключительном этапе интегрирования была использована формула 16*.

4.1.7. Основные методы интегрирования

Таких методов два: метод замены переменной, или подстановка, и интегрирование по частям.

Метод замены переменной

Существуют две формулы замены переменной в неопределенном интеграле:

1) 2)

Здесьсуть монотонные дифференцируемые функ-

ции своих переменных.

Искусство применения метода состоит, в основном, в выборе функцийтак, чтобы новые интегралы являлись табличными или сводились к ним. В окончательном ответе следует вернуться к старой переменной.

Заметим, что подведение под знак дифференциала является частным случаем замены переменной.

Примеры.

Решение. Здесь следует ввести новую переменную t так, чтобы избавиться от квадратного корня. Положим x + 1 = t, тогда x = t2 + 1, а dx = 2tdt:

Решение. Заменив x - 2 на t, получим в знаменателе одночлен и после почленного деления интеграл сведется к табличному от степенной функции:

При переходе к переменной x использованы формулы:

Метод интегрирования по частям

Дифференциал произведения двух функций определяется формулой

Интегрируя это равенство (см. свойство 3), найдем:

ОтсюдаЭто и есть формула интегрирования по

частям.

Интегрирование по частям предполагает субъективное представление подынтегрального выражения в виде u dV, и при этом интеграл должен быть проще, чемВ противном случае применение

метода не имеет смысла.

Итак, метод интегрирования по частям предполагает умение выделять из подынтегрального выражения сомножители u и dV с учетом вышеизложенных требований.

Приведем ряд типичных интегралов, которые могут быть найдены методом интегрирования по частям. 1. Интегралы вида

где P(x) - многочлен; k - постоянная. В этом случае u = P(x), а dV - все остальные сомножители.

Пример 1.

2. Интегралы типа

Здесь положим- другие сомножители.

Пример 2.

Пример 3. Пример 4.

Любой результат можно проверить дифференцированием. Напр мер, в данном случае

Результат верен.

3. Интегралы вида

где a, b - const. За u следует взять eax, sin bx или cos bx.

Пример 5.

Отсюда получаем Пример 6.

Отсюда

Пример 7. Пример 8.

Решение. Здесь надо сперва сделать замену переменной, а потом интегрировать по частям:

Пример 9. Пример 10.

Решение. Этот интеграл с равным успехом может быть найден как в результате замены переменной 1 + х2 = t2, так и методом интегрирования по частям:

Самостоятельная работа

Выполнить непосредственное интегрирование (1-10).

Применить простейшие методы интегрирования (11-46).

Выполнить интегрирование, используя методы замены переменной и интегрирования по частям (47-74).

LUXDETERMINATION 2010-2013