Медицинская и биологическая физика. Курс лекций с задачами : учеб. пособие / В.Н. Федорова, Е.В. Фаустов. - 2008. - 592 с.
|
|
ЛЕКЦИЯ 5 УЛЬТРАЗВУК И ИНФРАЗВУК
1. Излучатели и приемники ультразвука.
2. Поглощение ультразвука в веществе. Акустические течения и кавитация.
3. Отражение ультразвука. Звуковидение.
4. Биофизическое действие УЗ.
5. Использование УЗ в медицине: терапии, хирургии, диагностике.
6. Инфразвук и его источники.
7. Воздействие инфразвука на человека. Использование инфразвука в медицине.
8. Основные понятия и формулы. Таблицы.
9. Задачи.
Ультразвук - упругие колебания и волны с частотами приблизительно от 20x103 Гц (20 кГц) и до 109 Гц (1 ГГц). Область частот ультразвука от 1 до 1000 ГГц принято называть гиперзвуком. Ультразвуковые частоты делят на три диапазона:
• УНЧ - ультразвук низких частот (20-100 кГц);
• УСЧ - ультразвук средних частот (0,1-10 МГц);
• УЗВЧ - ультразвук высоких частот (10-1000 МГц).
Каждый диапазон имеет свои особенности медицинского применения.
5.1. Излучатели и приемники ультразвука
Электромеханические излучатели и приемники УЗ используют явление пьезоэлектрического эффекта, сущность которого поясняет рис. 5.1.
Ярко выраженными пьезоэлектрическими свойствами обладают такие кристаллические диэлектрики, как кварц, сегнетова соль и др.
Излучатели ультразвука
Электромеханический УЗ-излучатель использует явление обратного пьезоэлектрического эффекта и состоит из следующих элементов (рис. 5.2):
Рис. 5.1. а - прямой пьезоэлектрический эффект: сжатие и растяжение пьезоэлектрической пластины приводит к возникновению разности потенциалов соответствующего знака;
б - обратный пьезоэлектрический эффект: в зависимости от знака разности потенциалов, приложенной к пьезоэлектрической пластинке, она сжимается или растягивается
Рис. 5.2. Ультразвуковой излучатель
1 - пластины из вещества с пьезоэлектрическими свойствами;
2 - электродов, нанесенных на ее поверхности в виде проводящих слоев;
3 - генератора, подающего на электроды переменное напряжение требуемой частоты.
При подаче на электроды (2) переменного напряжения от генератора (3) пластина (1) испытывает периодические растяжения и сжатия. Возникают вынужденные колебания, частота которых равна частоте изменения напряжения. Эти колебания передаются частицам окружающей среды, создавая механическую волну с соответствующей частотой. Амплитуда колебаний частиц среды вблизи излучателя равна амплитуде колебаний пластины.
К особенностям ультразвука относится возможность получения волн большой интенсивности даже при сравнительно небольших амплитудах колебаний, так как при данной амплитуде плотность
Рис. 5.3. Фокусировка ультразвукового пучка в воде плосковогнутой линзой из плексигласа (частота ультразвука 8 МГц)
потока энергии пропорциональна квадрату частоты (см. формулу 2.6). Предельная интенсивность излучения ультразвука определяется свойствами материала излучателей, а также особенностями условий их использования. Диапазон интенсивности при генерации УЗ в области УСЧ чрезвычайно широк: от 10-14 Вт/см2 до 0,1 Вт/см2.
Для многих целей необходимы значительно большие интенсивности, чем те, которые могут быть получены с поверхности излучателя. В этих случаях можно воспользоваться фокусировкой. На рисунке 5.3 показана фокусировка ультразвука линзой из плексигласа. Для получения очень больших интенсивностей УЗ используют более сложные методы фокусировки. Так, в фокусе параболоида, внутренние стенки которого выполнены из мозаики кварцевых пластинок или из пьезокерамики титанита бария, на частоте 0,5 МГц удается получать в воде интенсивности ультразвука до 105 Вт/см2.
Приемники ультразвука
Электромеханические УЗ-приемники (рис. 5.4) используют явление прямого пьезоэлектрического эффекта. В этом случае под действием УЗ-волны возникают колебания кристаллической пластины (1),
Рис. 5.4. Ультразвуковой приемник
в результате которых на электродах (2) возникает переменное напряжение, которое фиксируется регистрирующей системой (3).
В большинстве медицинских приборов генератор ультразвуковых волн одновременно используется и как их приемник.
5.2. Поглощение ультразвука в веществе. Акустические течения и кавитация
По физической сущности УЗ не отличается от звука и представляет собой механическую волну. При ее распространении образуются чередующиеся участки сгущения и разряжения частиц среды. Скорость распространения УЗ и звука в средах одинаковы (в воздухе ~ 340 м/с, в воде и мягких тканях ~ 1500 м/с). Однако высокая интенсивность и малая длина УЗ-волн порождают ряд специфических особенностей.
При распространении УЗ в веществе происходит необратимый переход энергии звуковой волны в другие виды энергии, в основном в теплоту. Это явление называется поглощением звука. Уменьшение амплитуды колебания частиц и интенсивности УЗ вследствие поглощения носит экспоненциальный характер:
где А, А0 - амплитуды колебаний частиц среды у поверхности вещества и на глубине h; I, I0 - соответствующие интенсивности УЗ-волны; α - коэффициент поглощения, зависящий от частоты УЗ-волны, температуры и свойств среды.
Коэффициент поглощения - обратная величина того расстояния, на котором амплитуда звуковой волны спадает в «е» раз.
Чем больше коэффициент поглощения, тем сильнее среда поглощает ультразвук.
Коэффициент поглощения (α) растет при увеличении частоты УЗ. Поэтому затухание УЗ в среде во много раз выше, чем затухание слышимого звука.
Наряду с коэффициентом поглощения, в качестве характеристики поглощения УЗ используют и глубину полупоглощения (Н), которая связана с ним обратной зависимостью (Н = 0,347/α).
Глубина полупоглощения (Н) - это глубина, на которой интенсивность УЗ-волны уменьшается вдвое.
Значения коэффициента поглощения и глубины полупоглощения в различных тканях представлены в табл. 5.1.
В газах и, в частности, в воздухе ультразвук распространяется с большим затуханием. Жидкости и твердые тела (в особенности монокристаллы) являются, как правило, хорошими проводниками ультразвука, и затухание в них значительно меньше. Так, например, в воде затухание УЗ при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования УСЧ и УЗВЧ относятся почти исключительно к жидкостям и твердым телам, а в воздухе и газах применяют только УНЧ.
Выделение теплоты и химические реакции
Поглощение ультразвука веществом сопровождается переходом механической энергии во внутреннюю энергию вещества, что ведет к его нагреванию. Наиболее интенсивное нагревание происходит в областях, примыкающих к границам раздела сред, когда коэффициент отражения близок к единице (100 %). Это связано с тем, что в результате отражения интенсивность волны вблизи границы увеличивается и соответственно возрастает количество поглощенной энергии. В этом можно убедиться экспериментально. Надо приложить к влажной руке излучатель УЗ. Вскоре на противоположной стороне ладони возникает ощущение (похожее на боль от ожога), вызванное УЗ, отраженным от границы «кожа-воздух».
Ткани со сложной структурой (легкие) более чувствительны к нагреванию ультразвуком, чем однородные ткани (печень). Сравнительно много тепла выделяется на границе мягких тканей и кости.
Локальный нагрев тканей на доли градусов способствует жизнедеятельности биологических объектов, повышает интенсивность процессов обмена. Однако длительное воздействие может привести к перегреву.
В некоторых случаях используют сфокусированный ультразвук для локального воздействия на отдельные структуры организма. Такое воздействие позволяет добиться контролируемой гипертермии, т.е. нагрева до 41-44 °С без перегрева соседних тканей.
Повышение температуры и большие перепады давления, которыми сопровождается прохождение ультразвука, могут приводить к образованию ионов и радикалов, способных вступать во взаимодействие с молекулами. При этом могут протекать такие химические реакции, которые в обычных условиях неосуществимы. Химическое действие УЗ проявляется, в частности, в расщеплении молекулы воды на радикалы Н+ и ОН- с последующим образованием перекиси водорода Н2О2.
Акустические течения и кавитация
Ультразвуковые волны большой интенсивности сопровождаются рядом специфических эффектов. Так, распространению ультразвуковых волн в газах и в жидкостях сопутствует движение среды, которое называют акустическим течением (рис. 5.5, а). На частотах диапазона УСЧ в ультразвуковом поле с интенсивностью в несколько Вт/см2 может возникнуть фонтанирование жидкости (рис. 5.5, б) и распыление ее с образованием весьма мелкодисперсного тумана. Эта особенность распространения УЗ используется в ультразвуковых ингаляторах.
К числу важных явлений, возникающих при распространении интенсивного ультразвука в жидкостях, относится акустическая кавитация - рост в ультразвуковом поле пузырьков из имеющихся
Рис. 5.5. а) акустическое течение, возникающее при распространении ультразвука частоты 5 Мгц в бензоле; б) фонтан жидкости, образующийся при падении ультразвукового пучка изнутри жидкости на её поверхность (частота ультразвука 1,5 МГц, интенсивность 15 Вт/см2)
субмикроскопических зародышей газа или пара в жидкостях до размеров в доли мм, которые начинают пульсировать с частотой УЗ и захлопываются в положительной фазе давления. При схлопывании пузырьков газа возникают большие локальные давления порядка тысяч атмосфер, образуются сферические ударные волны. Такое интенсивное механическое воздействие на частицы, содержащиеся в жидкости, может приводить к разнообразным эффектам, в том числе и разрушающим, даже без влияния теплового действия ультразвука. Механические эффекты особенно значительны при действии фокусированного ультразвука.
Еще одним следствием схлопывания кавитационных пузырьков является сильный разогрев их содержимого (до температуры порядка 10 000 °С), сопровождающийся ионизацией и диссоциацией молекул.
Явление кавитации сопровождается эрозией рабочих поверхностей излучателей, повреждением клеток и т.п. Однако это явление приводит и к ряду полезных эффектов. Так, например, в области кавитации происходит усиленное перемешивание вещества, что используется для приготовления эмульсий.
5.3. Отражение ультразвука. Звуковидение
Как и всем видам волн, ультразвуку присущи явления отражения и преломления. Однако эти явления заметны лишь в том случае, когда размеры неоднородностей сравнимы с длиной волны. Длина УЗ-волны существенно меньше длины звуковой волны (λ = v/ν). Так, длины звуковой и ультразвуковой волн в мягких тканях на частотах 1 кГц и 1 МГц соответственно равны: λ = 1500/1000 = 1,5 м;
= 1500/1 000 000 = 1,5х10-3 м = 1,5 мм. В соответствии со сказанным, тело размером 10 см практически не отражает звук с длиной волны с λ = 1,5 м, но является отражателем для УЗ-волны с λ = 1,5 мм.
Эффективность отражения определяется не только геометрическими соотношениями, но и коэффициентом отражения r, который зависит от отношения волновых сопротивлений сред х (см. формулы 3.8, 3.9):
Для значений х, близких к 0, отражение является практически полным. Это является препятствием для перехода УЗ из воздуха в мягкие ткани (х = 3х10-4, r = 99,88%). Если УЗ-излучатель приложить непосредственно к коже человека, то ультразвук не проникнет внутрь, а будет отражаться от тонкого слоя воздуха между излучателем и кожей. В данном случае малые значения х играют отрицательную роль. Чтобы исключить воздушный слой, поверхность кожи покрывают слоем соответствующей смазки (водным желе), которая играет роль переходной среды, уменьшающей отражение. Напротив, для обнаружения неоднородностей в среде малые значения х являются положительным фактором.
Значения коэффициента отражения на границах различных тканей приведены в табл. 5.2.
Интенсивность принимаемого отраженного сигнала зависит не только от величины коэффициента отражения, но и от степени поглощения ультразвука средой, в которой он распространяется. Поглощение УЗволны приводит к тому, что эхосигнал, отраженный от структуры, расположенной в глубине, значительно слабее того, который образовался при отражении от подобной структуры, расположенной недалеко от поверхности.
На отражении УЗ-волн от неоднородностей основано звуковидение, используемое в медицинских ультразвуковых исследованиях (УЗИ). В этом случае ультразвук, отраженный от неоднородностей (отдельные органы, опухоли), преобразуется в электрические колебания, а последние - в световые, что позволяет видеть на экране те или иные предметы в непрозрачной для света среде. На рисунке 5.6 дано изображение
Рис. 5.6. Изображение человеческого плода возраста 17 недель, полученное с помощью ультразвука частотой 5 МГц
человеческого плода возраста 17 недель, полученное с помощью ультразвука.
На частотах УЗВЧ-диапазона создан ультразвуковой микроскоп - прибор, аналогичный обычному микроскопу, преимущество которого перед оптическим состоит в том, что при биологических исследованиях не требуется предварительного окрашивания объекта. На рисунке 5.7 показаны фотографии красных кровяных телец, полученные оптическим и ультразвуковым микроскопами.
Рис. 5.7. Фотографии красных кровяных телец, полученные оптическим (а) и УЗ (б) микроскопами
При увеличении частоты УЗ-волн увеличивается разрешающая способность (можно обнаруживать более мелкие неоднородности), но уменьшается их проникающая способность, т.е. уменьшается глубина, на которой можно исследовать интересующие структуры. Поэтому частоту УЗ выбирают так, чтобы сочетать достаточное разрешение с необходимой глубиной исследования. Так, для УЗ-исследования щитовидной железы, расположенной непосредственно под кожей, используются волны частоты 7,5 МГц, а для исследования органов брюшной полости используют частоту 3,5-5,5 МГц. Кроме того, учитывают и толщину жирового слоя: для худых детей используется частота 5,5 МГц, а для полных детей и взрослых - частота 3,5 МГц.
5.4. Биофизическое действие УЗ
При действии ультразвука на биологические объекты в облучаемых органах и тканях на расстояниях, равных половине длины волны, могут возникать разности давлений от единиц до десятков атмосфер. Столь интенсивные воздействия приводят к разнообразным биологическим эффектам, физическая природа которых определяется совместным действием механических, тепловых и физикохимических явлений, сопутствующих распространению ультразвука в среде.
Общее воздействие ультразвука на ткани и организм в целом
Биологическое действие ультразвука, т.е. изменения, вызываемые в жизнедеятельности и структурах биологических объектов при воздействии на них ультразвука, определяется, главным образом, его интенсивностью и длительностью облучения и может оказывать как положительное, так и отрицательное влияние на жизнедеятельность организмов. Так, возникающие при сравнительно небольших интенсивностях УЗ (до 1,5 Вт/см2) механические колебания частиц производят своеобразный микромассаж тканей, способствующий лучшему обмену веществ и лучшему снабжению тканей кровью и лимфой. Локальный нагрев тканей на доли и единицы градусов, как правило, способствует жизнедеятельности биологических объектов, повышая интенсивность процессов обмена веществ. Ультразвуковые волны малой и средней интенсивности вызывают в живых тканях положительные биологические эффекты, стимулирующие протекание нормальных физиологических процессов.
Успешное применение УЗ указанных интенсивностей находит применение в неврологии при реабилитации таких заболеваний, как хронический радикулит, полиартрит, неврит, невралгия. Ультразвук используется при лечении болезней позвоночника, суставов (разрушение солевых наслоений в суставах и полостях); при лечении различных осложнений после повреждения суставов, связок, сухожилий и т.д.
УЗ большой интенсивности (3-10 Вт/см2) оказывает вредное воздействие на отдельные органы и человеческий организм в целом. Высокая интенсивность ультразвука может привести к возникновению
в биологических средах акустической кавитации, сопровождающейся механическим разрушением клеток и тканей. Длительные интенсивные воздействия ультразвуком могут привести к перегреву биологических структур и к их разрушению (денатурация белков и др.). Воздействие интенсивного ультразвука может иметь и отдаленные последствия. Например, при длительных воздействиях УЗ частотой 20-30 кГц, возникающих в некоторых производственных условиях, у человека появляются расстройства нервной системы, повышается утомляемость, существенно поднимается температура, возникают нарушения органа слуха.
Очень интенсивный УЗ для человека смертелен. Так, в Испании 80 добровольцев были подвергнуты действию УЗ турбулентных двигателей. Результаты этого варварского эксперимента оказались плачевными: 28 человек погибли, остальные оказались полностью или частично парализованы.
Тепловой эффект, производимый УЗ большой интенсивности, может быть весьма значительным: при ультразвуковом облучении мощностью 4 Вт/см2 в течение 20 с температура тканей организма на глубине 2-5 см повышается на 5-6 °С.
В целях предотвращения профессиональных заболеваний у лиц, работающих на ультразвуковых установках, когда возможен контакт с источниками ультразвуковых колебаний, для защиты рук обязательно необходимо применение 2 пар перчаток: наружных резиновых и внутренних - хлопчатобумажных.
Действие ультразвука на клеточном уровне
В основе биологического действия УЗ могут лежать также вторичные физико-химические эффекты. Так, при образовании акустических потоков может происходить перемешивание внутриклеточных структур. Кавитация приводит к разрыву молекулярных связей в биополимерах и других жизненно важных соединениях и к развитию окислительно-восстановительных реакций. Ультразвук повышает проницаемость биологических мембран, вследствие чего происходит ускорение процессов обмена веществ из-за диффузии. Изменение потока различных веществ через цитоплазматическую мембрану приводит к изменению состава внутриклеточной среды и микроокружения клетки. Это влияет на скорость биохимических реакций с участием ферментов, чувствительных к содержанию в среде тех или
иных ионов. В некоторых случаях изменение состава среды внутри клетки может привести к ускорению ферментативных реакций, что наблюдается при воздействии на клетки ультразвуком низких интенсивностей.
Многие внутриклеточные ферменты активируются ионами калия. Поэтому при повышении интенсивности ультразвука более вероятным становится эффект подавления ферментативных реакций в клетке, так как в результате деполяризации клеточных мембран концентрация ионов калия во внутриклеточной среде уменьшается.
Действие ультразвука на клетки может сопровождается следующими явлениями:
• нарушением микроокружения клеточных мембран в виде изменения градиентов концентрации различных веществ около мембран, изменением вязкости среды внутри и вне клетки;
• изменением проницаемости клеточных мембран в виде ускорения обычной и облегченной диффузии, изменением эффективности активного транспорта, нарушением структуры мембран;
• нарушением состава внутриклеточной среды в виде изменения концентрации различных веществ в клетке, изменением вязкости;
• изменением скоростей ферментативных реакций в клетке вследствие изменения оптимальных концентраций веществ, необходимых для функционирования ферментов.
Изменение проницаемости клеточных мембран является универсальной реакцией на УЗ-воздействие, независимо от того, какой из факторов УЗ, действующих на клетку, доминирует в том или ином случае.
При достаточно большой интенсивности УЗ происходит разрушение мембран. Однако разные клетки обладают различной резистентностью: одни клетки разрушаются при интенсивности 0,1 Вт/см2, другие - при 25 Вт/см2.
В определенном интервале интенсивностей наблюдаемые биологические эффекты ультразвука обратимы. Верхняя граница этого интервала 0,1 Вт/см2 при частоте 0,8-2 МГц принята в качестве порога. Превышение этой границы приводит к выраженным деструктивным изменениям в клетках.
Разрушение микроорганизмов
Облучение ультразвуком с интенсивностью, превышающей порог кавитации, используют для разрушения имеющихся в жидкости бактерий и вирусов.
5.5. Использование УЗ в медицине: терапии, хирургии, диагностике
Деформации под воздействием УЗ используются при измельчении или диспергировании сред.
Явление кавитации используется для получения эмульсий несмешивающихся жидкостей, для очистки металлов от окалины и жировых пленок.
УЗ-терапия
Терапевтическое действие УЗ обусловлено механическим, тепловым, химическим факторами. Их совместное действие улучшает проницаемость мембран, расширяет кровеносные сосуды, улучшает обмен веществ, что способствует восстановлению равновесного состояния организма. Дозированным пучком УЗ можно провести мягкий массаж сердца, легких и других органов и тканей.
В отоларингологии УЗ воздействует на барабанную перепонку, слизистую оболочку носа. Таким способом осуществляют реабилитацию хронического насморка, болезней гайморовых полостей.
ФОНОФОРЕЗ - введение с помощью УЗ в ткани через поры кожи лекарственных веществ. Этот метод аналогичен электрофорезу, однако, в отличие от электрического поля, УЗ-поле перемещает не только ионы, но и незаряженные частицы. Под действием УЗ увеличивается проницаемость клеточных мембран, что способствует проникновению лекарственных веществ в клетку, тогда как при электрофорезе лекарственные вещества концентрируются в основном между клетками.
АУТОГЕМОТЕРАПИЯ - внутримышечное введение человеку собственной крови, взятой из вены. Эта процедура оказывается более эффективной, если взятую кровь перед вливанием облучить УЗ.
УЗ-облучение повышает чувствительность клетки к воздействию химических веществ. Это позволяет создавать менее вредные
вакцины, так как при их изготовлении можно использовать химические реактивы меньшей концентрации.
Предварительное воздействие УЗ усиливает действие γ- и СВЧоблучения на опухоли.
В фармацевтической промышленности ультразвук применяется для получения эмульсий и аэрозолей некоторых лекарственных веществ.
В физиотерапии УЗ используется для локального воздействия, осуществляемого с помощью соответствующего излучателя, контактно наложенного через мазевую основу на определенную область тела.
УЗ-хирургия
УЗ-хирургия подразделяется на две разновидности, одна из которых связана с воздействием на ткани собственно звуковых колебаний, вторая - с наложением УЗ-колебаний на хирургический инструмент.
Разрушение опухолей. Несколько излучателей, укрепленных на теле пациента, испускают пучки УЗ, фокусирующиеся на опухоли. Интенсивность каждого пучка недостаточна для повреждения здоровой ткани, но в том месте, где пучки сходятся, интенсивность возрастает и опухоль разрушается под действием кавитации и тепла.
В урологии с помощью механического действия УЗ дробят камни в мочевых путях и этим спасают больных от операций.
Сваривание мягких тканей. Если сложить два разрезанных кровеносных сосуда и прижать их друг к другу, то после облучения образуется сварной шов.
Сваривание костей (ультразвуковой остеосинтез). Область перелома заполняют измельченной костной тканью, смешанной с жидким полимером (циакрин), который под действием УЗ быстро полимеризуется. После облучения образуется прочный сварной шов, который постепенно рассасывается и заменяется костной тканью.
Наложение УЗ-колебаний на хирургические инструменты (скальпели, пилки, иглы) существенно снижает усилия резания, уменьшает болевые ощущения, оказывает кровоостанавливающее и стерилизующее действия. Амплитуда колебаний режущего инструмента при частоте 20-50 кГц составляет 10-50 мкм. УЗ-скальпели позволяют проводить операции в дыхательных органах без вскрытия грудной клетки,
операции в пищеводе и на кровеносных сосудах. Вводя длинный и тонкий УЗ-скальпель в вену, можно разрушить холестериновые утолщения в сосуде.
Стерилизация. Губительное действие УЗ на микроорганизмы используется для стерилизации хирургических инструментов.
В ряде случаев ультразвук используют в сочетании с другими физическими воздействиями, например с криогенным, при хирургическом лечении гемангиом и рубцов.
УЗ-диагностика
Ультразвуковая диагностика - совокупность методов исследования здорового и больного организма человека, основанных на использовании ультразвука. Физической основой УЗ-диагностики является зависимость параметров распространения звука в биологических тканях (скорость звука, коэффициент затухания, волновое сопротивление) от вида ткани и ее состояния. УЗ-методы позволяют осуществить визуализацию внутренних структур организма, а также исследовать движение биологических объектов внутри организма. Основная особенность УЗ-диагностики - возможность получить информацию о мягких тканях, незначительно различающихся по плотности или упругости. УЗ-метод исследования обладает высокой чувствительностью, может использоваться для обнаружения образований, не выявляемых с помощью рентгена, не требует применения контрастных веществ, безболезнен и не имеет противопоказаний.
Для диагностических целей используется УЗ частотой от 0,8 до 15 МГц. Низкие частоты применяются при исследовании глубоко расположенных объектов или при исследовании, проводимом через костную ткань, высокие - для визуализации объектов, близко расположенных к поверхности тела, для диагностики в офтальмологии, при исследовании поверхностно расположенных сосудов.
Наибольшее распространение в УЗ-диагностике получили эхолокационные методы, основанные на отражении или рассеянии импульсных УЗ-сигналов. В зависимости от способа получения и характера представления информации приборы для УЗ-диагностики разделяют на 3 группы: одномерные приборы с индикацией типа А; одномерные приборы с индикацией типа M; двумерные приборы с индикацией типа В.
При УЗ-диагностике с помощью прибора типа А излучатель, испускающий короткие (длительностью порядка 10-6 с) УЗ-импульсы, прикладывается к исследуемому участку тела через контактное вещество. В паузах между импульсами прибор принимает импульсы, отраженные от различных неоднородностей в тканях. После усиления эти импульсы наблюдаются на экране электроннолучевой трубки в виде отклонений луча от горизонтальной линии. Полная картина отраженных импульсов называется одномерной эхограммой типа А. На рисунке 5.8 показана эхограмма, полученная при эхоскопии глаза.
Рис. 5.8. Эхоскопия глаза по А-методу:
1 - эхосигнал от передней поверхности роговицы; 2, 3 - эхосигналы от передней и задней поверхностей хрусталика; 4 - эхосигнал от сетчатки и структур заднего полюса глазного яблока
Эхограммы тканей различного типа отличаются друг от друга количеством импульсов и их амплитудой. Анализ эхограммы типа А во многих случаях позволяет получить дополнительные сведения о состоянии, глубине залегания и протяженности патологического участка.
Одномерные приборы с индикацией типа А применяются в неврологии, нейрохирургии, онкологии, акушерстве, офтальмологии и др. областях медицины.
В приборах с индикацией типа M отраженные импульсы после усиления подаются на модулирующий электрод электронно-лучевой трубки и представляются в виде черточек, яркость которых связана с амплитудой импульса, а ширина - с его длительностью. Развертка этих черточек во времени дает картину отдельных отражающих структур. Этот тип индикации широко используется в кардиографии. УЗ-кардиограмма может быть зафиксирована при помощи электронно-лучевой трубки с памятью или на бумажной ленте самописца. Этим методом осуществляется запись движений элементов сердца, что позволяет определять стеноз митрального клапана, врожденные пороки сердца и др.
При использовании методов регистрации типов А и M преобразователь находится в фиксированном положении на теле пациента.
В случае индикации типа В преобразователь перемещается (осуществляет сканирование) вдоль поверхности тела, и на экране электронно-лучевой трубки фиксируется двумерная эхограмма, воспроизводящая поперечное сечение исследуемой области тела.
Разновидностью метода В является мультисканирование, при котором механическое перемещение датчика заменяется последовательным электрическим переключением ряда элементов, расположенных на одной линии. Мультисканирование позволяет наблюдать исследуемые сечения практически в реальном масштабе времени. Другой разновидностью метода В является секторное сканирование, при котором отсутствует движение эхозонда, а изменяется угол введения УЗ-луча.
УЗ-приборы с индикацией типа В используются в онкологии, акушерстве и гинекологии, урологии, отоларингологии, офтальмологии и др. Модификации приборов типа В с мультисканированием и секторным сканированием используют в кардиологии.
Все эхолокационные методы УЗ-диагностики позволяют так или иначе регистрировать внутри организма границы областей с различными волновыми сопротивлениями.
Новый метод УЗ-диагностики - реконструктивная (или вычислительная) томография - дает пространственное распределение параметров распространения звука: коэффициента затухания (аттенюационная модификация метода) или скорости звука (рефракционная модификация). В этом методе исследуемое сечение объекта прозвучивается многократно в различных направлениях. Информация о координатах прозвучивания и об ответных сигналах обрабатывается на ЭВМ, в результате чего на дисплее отображается реконструированная томограмма.
В последнее время начал внедряться метод эластометрии для исследования тканей печени как в норме, так и при различных стадиях микроза. Суть метода такова. Датчик устанавливается перпендикулярно поверхности тела. При помощи вибратора, встроенного в датчик, создается низкочастотная звуковая механическая волна (ν = 50 Гц, А = 1 мм), скорость распространения которой по подлежащим тканям печени оценивается при помощи ультразвука с частотой ν = 3,5 МГц (по сути, осуществляется эхолокация). С использованием
модуль Е (эластичность) ткани. Для пациента проводится серия измерений (не менее 10) в межреберных промежутках в проекции положения печени. Анализ всех данных происходит автоматически, аппарат выдает количественную оценку эластичности (плотности), которая представляется как в числовом, так и в цветовом виде.
Для получения информации о движущихся структурах организма используются методы и приборы, работа которых основана на эффекте Доплера. Такие приборы содержат, как правило, два пьезоэлемента: излучатель УЗ, работающий в непрерывном режиме, и приемник отраженных сигналов. Измеряя доплеровский сдвиг частоты УЗ-волны, отраженной от подвижного объекта (например, от стенки сосуда), определяют скорость движения отражающего объекта (см. формулу 2.9). В наиболее совершенных приборах этого типа применяется импульсно-доплеровский (когерентный) способ локации, позволяющий выделить сигнал из определенной точки пространства.
Приборы с использованием эффекта Доплера применяются для диагностики заболеваний сердечно-сосудистой системы (определение
движения участков сердца и стенок сосудов), в акушерстве (исследование сердцебиения плода), для исследования кровотока и др.
Осуществляется исследование органов через пищевод, с которым они граничат.
Сопоставление ультразвукового и рентгеновского «просвечиваний»
В некоторых случаях ультразвуковое просвечивание имеет преимущество перед рентгеновским. Это связано с тем, что рентгеновские лучи дают четкое изображение «твердых» тканей на фоне «мягких». Так, например, на фоне мягких тканей хорошо видны кости. Для получения рентгеновского изображения мягких тканей на фоне других мягких тканей (например, кровеносный сосуд на фоне мышц) сосуд нужно заполнить веществом, хорошо поглощающим рентгеновское излучение (контрастное вещество). Ультразвуковое просвечивание, благодаря уже указанным особенностям, дает в этом случае изображение без применения контрастных веществ.
При рентгеновском обследовании дифференцируется разность плотностей до 10 %, при ультразвуковом - до 1 %.
5.6. Инфразвук и его источники
Инфразвук - упругие колебания и волны с частотами, лежащими ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвукового диапазона принимают 16-20 Гц. Такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы Гц, хотя при этом исчезает тональный характер ощущения и делаются различимыми лишь отдельные циклы колебаний. Нижняя частотная граница инфразвука неопределенна; в настоящее время область его изучения простирается вниз примерно до 0,001 Гц.
Инфразвуковые волны распространяются в воздушной и водной средах, а также в земной коре (сейсмические волны). Основная особенность инфразвука, обусловленная его низкой частотой, - малое поглощение. При распространении в глубоком море и в атмосфере на уровне земли инфразвуковые волны частоты 10-20 Гц затухают на расстоянии 1000 км не более чем на несколько децибел. Известно, что звуки
извержений вулканов и атомных взрывов могут многократно обходить вокруг земного шара. Из-за большой длины волны мало и рассеяние инфразвука. В естественных средах заметное рассеяние создают лишь очень крупные объекты - холмы, горы, высокие здания.
Естественными источниками инфразвука являются метеорологические, сейсмические и вулканические явления. Инфразвук генерируется атмосферными и океаническими турбулентными флуктуациями давления, ветром, морскими волнами (в том числе и приливными), водопадами, землетрясениями, обвалами.
Источниками инфразвука, связанными с человеческой деятельностью, являются взрывы, орудийные выстрелы, ударные волны от сверхзвуковых самолетов, удары копров, работа реактивных двигателей и др. Инфразвук содержится в шуме двигателей и технологического оборудования. Вибрации зданий, создаваемые производственными и бытовыми возбудителями, как правило, содержат инфразвуковые компоненты. Существенный вклад в инфразвуковое загрязнение среды дают транспортные шумы. Например, легковые автомобили на скорости 100 км/ч создают инфразвук с уровнем интенсивности до 100 дБ. В моторном отделении крупных судов зарегистрированы инфразвуковые колебания, создаваемые работающими двигателями, с частотой 7-13 Гц и уровнем интенсивности 115 дБ. На верхних этажах высотных зданий, особенно при сильном ветре, уровень интенсивности инфразвука достигает
100 дБ.
Инфразвук почти невозможно изолировать - на низких частотах все звукопоглощающие материалы практически полностью теряют свою эффективность.
5.7. Воздействие инфразвука на человека. Использование инфразвука в медицине
На человека инфразвук оказывает, как правило, отрицательное действие: вызывает угнетенное настроение, усталость, головную боль, раздражение. У человека, подвергнутого воздействию инфразвука низкой интенсивности, появляются симптомы «морской болезни», тошнота, головокружение. Появляется головная боль, повышается утомляемость, слабеет слух. При частоте 2-5 Гц
и уровне интенсивности 100-125 дБ субъективная реакция сводится к ощущению давления в ухе, затруднению при глотании, вынужденной модуляции голоса и затруднению речи. Воздействие инфразвука негативно сказывается на зрении: ухудшаются зрительные функции, снижается острота зрения, сужается поле зрения, ослабляется аккомодационная способность, нарушается устойчивость фиксации глазом наблюдаемого объекта.
Шум на частоте 2-15 Гц при уровне интенсивности 100 дБ приводит к возрастанию ошибки слежения за стрелочными индикаторами. Проявляется судорожное подергивание глазного яблока, нарушение функции органов равновесия.
Летчики и космонавты, подвергнутые на тренировках воздействию инфразвука, медленнее решали даже простые арифметические задачи.
Существует предположение, что различные аномалии в состоянии людей при плохой погоде, объясняемые климатическими условиями, являются на самом деле следствием воздействия инфразвуковых волн.
При средней интенсивности (140-155 дБ) могут наступать обмороки, временная потеря зрения. При больших интенсивностях (порядка 180 дБ) может наступить паралич со смертельным исходом.
Предполагают, что негативное влияние инфразвука связано с тем, что в инфразвуковой области лежат частоты собственных колебаний некоторых органов и частей тела человека. Это вызывает нежелательные резонансные явления. Укажем некоторые частоты собственных колебаний для человека:
• тело человека в положении лежа - (3-4) Гц;
• грудная клетка - (5-8) Гц;
• брюшная полость - (3-4) Гц;
• глаза - (12-27) Гц.
Особенно вредно воздействие инфразвука на сердце. При достаточной мощности возникают вынужденные колебания сердечной мышцы. При резонансе (6-7 Гц) их амплитуда возрастает, что может привести к кровоизлиянию.
Использование инфразвука в медицине
В последние годы инфразвук стали широко применять в медицинской практике. Так, в офтальмологии инфразвуковые волны
с частотами до 12 Гц используются при лечении близорукости. При лечении заболеваний век используется инфразвук для фонофореза (рис. 5.9), а также для очищения раневых поверхностей, для улучшения гемодинамики и регенерации в веках, массажа (рис. 5.10) и т.д.
На рисунке 5.9 показано применение инфразвука для лечения аномалии развития слезоотводящих путей у новорожденных.
На одном из этапов лечения осуществляется массаж слезного мешка. При этом генератор инфразвука создает избыточное давление в слезном мешке, которое способствует разрыву эмбриональной ткани в слезоносовом канале.
Рис. 5.9. Схема инфразвукового фонофореза
Рис. 5.10. Массаж слезного мешка
5.8. Основные понятия и формулы. Таблицы
Таблица 5.1. Коэффициент поглощения и глубина полупоглощения на частоте 1 МГц
Таблица 5.2. Коэффициент отражения на границах различных тканей
5.9. Задачи
1. Отражение волн от мелких неоднородностей становится заметным, когда их размеры превосходят длину волны. Оценить минимальный размер d почечного камня, который может быть обнаружен методом УЗ-диагностики при частоте ν = 5 МГц. Скорость УЗ-волн v = 1500 м/с.
Решение
Найдем длину волны: λ = v/ν = 1500/(5*106) = 0,0003 м = 0,3 мм. d > λ.
Ответ: d > 0,3 мм.
2. В некоторых физиотерапевтических процедурах используется ультразвук частоты ν = 800 кГц и интенсивности I = 1 Вт/см2. Найти амплитуду колебания молекул мягких тканей.
Решение
Интенсивность механических волн определяется формулой (2.6)
Плотность мягких тканей ρ « 1000 кг/м3.
круговая частота ω = 2πν ≈ 2х3,14х800х103 ≈ 5х106 с-1;
скорость ультразвука в мягких тканях ν ≈ 1500 м/с.
Необходим перевод интенсивности в СИ: I = 1 Вт/см2 = 104 Вт/м2.
Подставив численные значения в последнюю формулу, найдем:
Столь малое смещение молекул при прохождении ультразвука указывает на то, что его действие проявляется на клеточном уровне. Ответ: А = 0,023 мкм.
3. Стальные детали проверяют на качество ультразвуковым дефектоскопом. На какой глубине h в детали обнаружена трещина и какова толщина d детали, если после излучения ультразвукового сигнала были получены два отраженных сигнала через 0,1 мс и 0,2 мс? Скорость распространения ультразвуковой волны в стали равна v = 5200 м/с.
Решение
2h = tv → h = tv/2. Ответ: h = 26 см; d = 52 см.