Биология: учебник / Пехов А.П., -, 2010. - 664 с.
|
|
КРАТКАЯ ИСТОРИЯ БИОЛОГИИ
Биология (от греч. bios - жизнь, logos - наука) - наука о жизни, об общих закономерностях существования и развития живых существ. Предметом ее изучения являются живые организмы, их строение, рост, функции, развитие, взаимоотношения со средой и происхождение. Подобно физике и химии, она относится к естественным наукам, предмет изучения которых - природа.
Биология - одна из старейших естественных наук, хотя термин «биология» для ее обозначения впервые был предложен лишь в
Ж.Б. Ламарк (1744-1829) и Л. Тревиранус (1779-1864).
Биология, как и другие науки, возникла и всегда развивалась в связи с материальными условиями жизни общества, развитием общественного производства, медициной, практическими потребностями людей.
В наше время она характеризуется исключительно широким перечнем разрабатываемых фундаментальных проблем, начиная с исследований элементарных клеточных структур и реакций, протекающих в клетках, и заканчивая познанием процессов, развернутых и развивающихся на глобальном (биосферном) уровне. В относительно короткие исторические сроки были разработаны принципиально новые методы исследований, вскрыты молекулярные основы строения и активности клеток, установлена генетическая роль нуклеиновых кислот, расшифрован генетический код и сформулирована теория генетической информации, появились новые обоснования теории эволюции, возникли новые биологические науки. Новейший революционный этап в развитии биологии - это создание методологии генетической инженерии, которая открыла принципиально новые возможности для проникновения в глубь биологических процессов с целью дальнейшей характеристики живой материи.
ЭТАПЫ РАЗВИТИЯ БИОЛОГИИ
Самые первые сведения о живых существах человек стал собирать, вероятно, с тех пор, когда он осознал свое отличие от окружающего мира. Уже в литературных памятниках египтян, вавилонян, индийцев и других народов содержатся сведения о строении многих растений и животных, о применении этих знаний в медицине и сельском хозяйстве. В XIV в. до н. э. многие клинописные таблички, найденные в Месопотамии, содержали сведения о животных и растениях, о систематизации животных путем разделения их на плотоядных и травоядных, а растений - на деревья, овощи, лекарственные травы и т. д. В медицинских сочинениях, созданных в IV-I вв. до н. э. в Индии, содержатся представления о наследственности как причине сходства родителей и детей, а в памятниках «Махабхарата» и «Рамаяна» дано описание ряда особенностей жизни многих животных и растений.
В период рабовладельческого строя возникают ионийская, афинская, александрийская и римская школы в изучении животных и растений.
Ионийская школа возникла в Ионии (VII-IV вв. до н. э.). Не веря в сверхъестественное происхождение жизни, философы этой школы признавали причинность явлений, движение жизни по определенному пути, доступность для изучения «естественного закона», который, по их утверждению, управляет миром. В частности, Алкмеон (конец VI - начало V в. до н. э.) описал зрительный нерв и развитие куриного эмбриона, признавал мозг в качестве центра ощущений и мышления, а Гиппократ (460-370 гг. до н. э.) дал первое относительно подробное описание строения человека и животных, указал на роль среды и наследственности в возникновении болезней.
Афинская школа сложилась в Афинах. Наиболее выдающийся представитель этой школы Аристотель (384-322 гг. до н. э.) создал четыре биологических трактата, в которых содержались разносторонние сведения о животных. Аристотель подразделял окружающий мир на четыре царства (неодушевленный мир земли, воды и воздуха, мир растений, мир животных и мир человека), между которыми устанавливалась последовательность. В дальнейшем эта последовательность превратилась в «лестницу существ» (XVIII в.). Аристотелю принадлежит, вероятно, и самая первая классификация животных, которых он подразделял на четвероногих, летающих, пернатых и рыб. Китообразных он объединил с сухопутными животными,
но не с рыбами, которых классифицировал на костных и хрящевых. Аристотелю были известны основные признаки млекопитающих. Он дал описание наружных и внутренних органов человека, половых различий у животных, их способов размножения и образа жизни, происхождения пола, наследования отдельных признаков, уродств, многоплодия и т. д. Аристотеля считают основоположником зоологии. Другой представитель этой школы - Теофраст (372-287 гг. до н. э.) оставил сведения о строении и размножении многих расте- ний, о различиях между однодольными и двудольными растениями, ввел в употребление термины «плод», «околоплодник», «сердцевина». Его считают основоположником ботаники.
Александрийская
школа вошла в историю биологии благодаря ученым, занимающимся в
основном изучением анатомии. Герофил (расцвет творчества на 300-е гг.
до н. э.) оставил сведения по сравнительной анатомии человека и
животных, впервые указал на различия между артериями и венами, а
Эразистрат (около
Римская школа не дала самостоятельных разработок в изучении живых организмов, ограничившись коллекционированием сведений, добытых греками. Плиний Старший (23-79) - автор «Естественной истории» в 37 книгах, в которой содержались также и сведения о животных и растениях. Диоскорид (I в. н. э.) оставил описание около 600 видов растений, обращая внимание на их целебные свойства. Клавдий Гален (130-200) широко проводил вскрытия млекопитающих (крупный и мелкий рогатый скот, свиньи, собаки, медведи и др.), первым дал сравнительно-анатомическое описание человека и обезьяны. Он был последним великим биологом древности, оказавшим исключительно большое влияние на анатомию и физиологию.
В Средние века господствующей идеологией была религия. По образному выражению классика, наука в те времена превратилась в «служанку богословия». Биологические знания, основанные на описаниях Аристотеля, Плиния, Галена, были отражены в основном в энциклопедии Альберта Великого (1206-1280). На Руси сведения о животных и растениях были обобщены в «Поучении Владимира Мономаха» (XI в.). Выдающийся ученый и мыслитель Средних веков Абу-Али Ибн Сина (980-1037), известный в Европе под именем Авиценны, развивал взгляды о вечности и несотворенности мира, признавал причинные закономерности в природе.
В этот период биология еще не выделилась в самостоятельную науку, но отделилась от восприятия мира на основе искаженных религиозно-философских взглядов.
Начала биологии, как и всего естествознания, связаны с эпохой Возрождения (Ренессанса). В этот период происходит крушение феодального общества, уничтожение диктатуры церкви. Как отмечал Энгельс, настоящее «естествознание начинается со второй половины XV в., и с этого времени оно непрерывно делает все более быстрые успехи». Например, Леонардо да Винчи (1452-1519) открыл гомологию органов, описал многие растения, птиц в полете, щитовидную железу, способ соединения костей суставов, деятельность сердца и зрительной функции глаза, отметил сходство костей человека и животных. Андреас Везалий (1514-1564) создал анатомический труд «Семь книг о строении человеческого тела», заложивший основы научной анатомии. В. Гарвей (1578-1657) открыл кровообращение, а Д. Борели (1608-1679) описал механизм движения животных, что заложило научные основы физиологии. С того времени анатомия и физиология развивались вместе в течение многих десятков лет.
Чрезвычайно быстрое накопление научных данных о живых организмах вело к дифференциации биологических знаний, к разделению биологии на отдельные науки. В XVI-XVII вв. стала стремительно развиваться ботаника, с изобретением микроскопа (начало XVII в.) возникла микроскопическая анатомия растений, закладываются основы физиологии растений. С XVI в. стала быстрее развиваться зоология. Большое влияние на нее в последующем оказала система классификации животных, созданная К. Линнеем (1707-1778). Введя четырехчленные таксономические подразделения (класс - отряд - род - вид), К. Линней разделил животных на шесть классов (млекопитающие, птицы, амфибии, рыбы, насекомые, черви). Человека и человекообразных обезьян он отнес к приматам. Значительное влияние на биологию того времени оказал немецкий ученый Г. Лейбниц (1646-1716), который разработал учение о «лестнице существ».
В XVIII-XIX вв. закладываются научные основы эмбриологии - К.Ф. Вольф (1734-1794), К.М. Бэр (1792-1876). В
В
В первой половине XIX в. возникает бактериология, которая благодаря трудам Л. Пастсра, Р. Коха, Д. Листера и И.И. Мечникова
в последующем перерастает в микробиологию как самостоятельную науку. К концу XIX в. в качестве самостоятельных наук оформляются паразитология и экология.
В
Еще в первой половине XIX в. возникли идеи об использовании физики и химии для изучения явлений жизни (Г. Деви, Ю. Либих). Реализация этих идей привела к тому, что в середине XIX в. физиология обособилась от анатомии, причем физико-химическое направление заняло в ней ведущее место. На рубеже XIX-XX вв. сформировалась современная биологическая химия. В первой половине XX в. оформляется в качестве самостоятельной науки биологическая физика.
Важнейшим
рубежом в развитии биологии в XX в. стали 40-50-е гг., когда в биологию
хлынули идеи и методы физики и химии, а в качестве объектов стали
использовать микроорганизмы. В
12 апреля
В 1970-е гг. появляются первые работы по генетической инженерии, которая подняла на новый уровень биотехнологию и открыла новые перспективы перед медициной.
Биология - это комплексная наука, ставшая таковой в результате дифференцирования и интеграции разных биологических наук.
Процесс дифференциации начался с разделения зоологии, ботаники и микробиологии на ряд самостоятельных наук. В пределах зоологии возникли зоология позвоночных и беспозвоночных, протозоология, гельминтология, арахноэнтомология, ихтиология, орнитология и т. д. В ботанике выделились микология, альгология, бриология и другие дисциплины. Микробиология разделилась на бактериологию, вирусологию и иммунологию. Одновременно с дифференциацией шел процесс возникновения и оформления новых наук, которые расчленились на более узкие науки. Например, генетика, возникнув в качестве самостоятельной науки, разделилась на общую и молекулярную, на генетику растений, животных и микроорганизмов. В то же время появились генетика пола, генетика поведения, популяционная генетика, эволюционная генетика и т. д. В недрах физиологии возникли сравнительная и эволюционная физиология, эндокринология и другие физиологические науки. В последние годы отмечается тенденция оформления узких наук, получающих название по проблеме (объекту) исследования. Такими науками являются энзимология, мембранология, кариология, плазмидология и др.
В результате интеграции наук возникли биохимия, биофизика, радиобиология, цитогенетика, космическая биология и другие науки.
Ведущее положение в современном комплексе биологических наук занимает физико-химическая биология, новейшие данные которой вносят существенный вклад в представления о научной картине мира, в дальнейшее обоснование материального единства мира. Продолжая отражать живой мир и человека как часть этого мира, глубоко развивая познавательные идеи и совершенствуясь в качестве теоретической основы медицины, биология приобрела исключительно большое значение в научно-техническом прогрессе, стала произ- водительной силой.
МЕТОДЫ ИССЛЕДОВАНИЙ
Новые теоретические представления и продвижение биологического познания вперед всегда определялись и определяются созданием и использованием новых методов исследования.
Основными методами, используемыми в биологических науках, являются описательный, сравнительный, исторический и экспери- ментальный.
Описательный метод является самым старым и заключается в сборе фактического материала и его описании. Возникнув в самом начале биологического познания, этот метод долгое время оставался един- ственным в изучении строения и свойств организмов. Поэтому старая биология была связана с простым отражением живого мира в виде описания растений и животных, т. е. она являлась, по существу, описательной наукой. Использование этого метода позволило заложить основы биологических знаний. Достаточно вспомнить, насколько успешным оказался этот метод в систематике организмов.
Описательный метод широко используется и сейчас. Изучение клеток с помощью светового или электронного микроскопа и описание выявленных при этом микроскопических или субмикроскопических особенностей в их строении представляет собой один из примеров использования описательного метода в настоящее время.
Сравнительный метод заключается в сравнении изучаемых организмов, их структур и функций между собой с целью выявления сходств и различий. Этот метод утвердился в биологии в XVIII в. и оказался очень плодотворным в решении многих крупнейших проблем. С помощью этого метода и в сочетании с описательным методом были получены сведения, позволившие в XVIII в. заложить основы систематики растений и животных (К. Линней), а в XIX в. сформулировать клеточную теорию (М. Шлейден и Т. Шванн) и учение об основных типах развития (К. Бэр). Метод широко применялся в XIX в. в обосновании теории эволюции, а также в перестройке ряда биологических наук на основе этой теории. Однако использование этого метода не сопровождалось выходом биологии за пределы описательной науки.
Сравнительный метод широко применяется в разных биологических науках и в наше время. Сравнение приобретает особую цен- ность тогда, когда невозможно дать определение понятия. Например, с помощью электронного микроскопа часто получают изображения, истинное содержание которых заранее неизвестно. Только сравнение их со светомикроскопическими изображениями позволяет получить желаемые данные.
Во второй половине XIX в. благодаря Ч. Дарвину в биологию входит исторический метод, который позволил поставить на научные основы исследование закономерностей появления и развития организмов, становления структуры и функций организмов во времени и пространстве. С введением этого метода в биологию немедленно
произошли значительные качественные изменения. Исторический метод превратил биологию из науки чисто описательной в науку, объясняющую, как произошли и как функционируют многообразные живые системы. Благодаря этому методу биология поднялась сразу на несколько ступеней выше. В настоящее время исторический метод вышел, по существу, за рамки метода исследования. Он стал всеобщим подходом к изучению явлений жизни во всех биологических науках.
Экспериментальный метод заключается в активном изучении того или иного явления путем эксперимента. Нельзя не отметить, что вопрос об опытном изучении природы как новом принципе естественно-научного познания, т. е. вопрос об эксперименте как одной из основ в познании природы, был поставлен еще в XVII в. английским философом Ф. Бэконом (1561-1626). Его введение в биологию связано с работами В. Гарвея в XVII в. по изучению кровообращения. Однако экспериментальный метод широко вошел в биологию лишь в начале XIX в., причем через физиологию, в которой стали использовать большое количество инструментальных методик, позволявших регистрировать и количественно характе- ризовать приуроченность функций к структуре. Благодаря трудам Ф. Мажанди (1783-1855), Г. Гельмгольца (1821-1894), И.М. Сеченова (1829-1905), а также классиков эксперимента К. Бернара (1813-1878) и И.П. Павлова (1849-1936) физиология, вероятно, первой из биологических наук стала экспериментальной наукой.
Другим направлением, по которому в биологию вошел экспериментальный метод, оказалось изучение наследственности и изменчивости организмов. Здесь главнейшая заслуга принадлежит Г. Менделю, который, в отличие от своих предшественников, использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основе получаемых данных. Работа Г. Менделя явилась классическим образцом методологии экспериментальной науки.
В обосновании экспериментального метода важное значение имели работы, выполненные в микробиологии Л. Пастером (1822-1895), который впервые ввел эксперимент для изучения брожения и опро- вержения теории самопроизвольного зарождения микроорганизмов, а затем для разработки вакцинации против инфекционных болезней. Во второй половине XIX в. вслед за Л. Пастером значительный вклад в разработку и обоснование экспериментального метода в микробио-
логии внесли Р. Кох (1843-1910), Д. Листер (1827-1912), И.И. Мечников (1845-1916), Д.И. Ивановский (1864-1920), С.Н. Виноградский (1856- 1890), М. Бейерник (1851-1931) и др. В XIX в. биология обогатилась также созданием методических основ моделирования, которое явля- ется также высшей формой эксперимента. Изобретение Л. Пастером, Р. Кохом и другими микробиологами способов заражения лабораторных животных патогенными микроорганизмами и изучение на них патогенеза инфекционных болезней - это классический пример моделирования, перешедшего в XX в. и дополненного в наше время моделированием не только разных болезней, но и различных жизненных процессов, включая происхождение жизни.
Начиная, например, с 40-х гг. XX в. экспериментальный метод в биологии подвергся значительному усовершенствованию за счет повышения разрешающей способности многих биологических методик и разработки новых экспериментальных приемов. Так, была повышена разрешающая способность генетического анализа, ряда иммунологических методик. В практику исследований были введены культивирование соматических клеток, выделение биохимических мутантов микроорганизмов и соматических клеток и т. д. Экспериментальный метод стал широко обогащаться методами физики и химии, которые оказались исключительно ценными не только в качестве самостоятельных методов, но и в сочетании с биологическими методами. Например, структура и генетическая роль ДНК были выяснены в результате сочетанного использования химических методов выделения ДНК, химических и физических методов определения ее первичной и вторичной структуры и биологических методов (трансформации и генетического анализа бактерий), доказательства ее роли как генетического материала.
В настоящее время экспериментальный метод характеризуется исключительными возможностями в изучении явлений жизни. Эти возможности определяются использованием микроскопии разных видов, включая электронную с техникой ультратонких срезов, биохимических методов, высокоразрешающего генетического анализа, иммунологических методов, разнообразных методов культивирования и прижизненного наблюдения в культурах клеток, тканей и органов, маркировки эмбрионов, оплодотворения в пробирке, метода меченых атомов, рентгеноструктурного анализа, ультрацентрифугирования, спектрофотометрии, хроматографии, электрофореза, секвенирования, конструкции биологически активных рекомбинантных моле-
кул ДНК и т. д. Новое качество, заложенное в экспериментальном методе, вызвало качественные изменения и в моделировании. Наряду с моделированием на уровне органов в настоящее время развивается моделирование на молекулярном и клеточном уровнях.
Оценивая методологию изучения природы в XV-XIX вв., Ф. Энгельс отмечал, что «разложение природы на ее определенные части, разделение различных процессов и предметов природы на определенные классы, исследование внутреннего строения органических тел по их многообразным анатомическим формам - все это было основным условием тех исполинских успехов, которые были достигнуты в области познания природы за последние четыреста лет». Методология «разделения» перешла и в XX в. Однако в подходах к изучению жизни произошли несомненные изменения. Новое, заложенное в экспериментальном методе и его техническом оснащении, определило и новые подходы к изучению явлений жизни. Продвижение вперед биологических наук в XX в. во многом определилось не только экспериментальным методом, но и системно- структурным подходом к изучению организации и функций живых организмов, анализом и синтезом данных о структуре и функциях исследуемых объектов. Экспериментальный метод в современном оснащении и в сочетании со системно-структурным подходом в корне преобразил биологию, расширил ее познавательные возможности, еще больше связал ее с медициной, с производством.
БИОЛОГИЯ - ТЕОРЕТИЧЕСКАЯ ОСНОВА МЕДИЦИНЫ
Связи биологического познания с медициной уходят в далекое прошлое и датируются тем же временем, что и возникновение самой биологии. Многие выдающиеся медики прошлого были одновременно и выдающимися биологами (Гиппократ, Герофил, Эразистрат, Гален, Авиценна, Мальпиги и др.). Тогда и позднее биология стала обслуживать медицину путем «доставки» ей сведений о строении организма. Однако роль биологии как теоретической основы медицины в современном понимании стала формироваться лишь в XIX в.
Создание в XIX в. клеточной теории заложило подлинно научные основы связи биологии с медициной. В
лировано
положение о связи патологического процесса с клетками, с изменениями в
строении последних. Соединив клеточную теорию с патологией, Р. Вирхов
прямым образом «подвел» биологию под медицину в качестве теоретической
основы. Значительные заслуги в укреплении связей биологии и медицины в
XIX в. и начале XX в. принадлежат К. Бернару и И.П. Павлову, которые
раскрыли и общебиологические основы физиологии и патологии, Л. Пастеру,
Р. Коху, Д.И. Ивановскому и их последователям, создавшим учение об
инфекционной патологии, на основе которой возникли представления об
асептике и антисептике, приведшие к ускорению развития хирургии.
Исследуя процессы пищеварения у низших многоклеточных животных, И.И.
Мечников заложил биологические основы учения об иммунитете, имеющего
большое значение в медицине. В укреплении связей биологии и медицины
существенный вклад принадлежит генетике. Исследуя биохимические
проявления действия генов у человека, английский врач А. Гаррод в
На основе анатомии, физиологии, биохимии и других медикобиологических наук развиваются терапия и хирургия. На основе микробиологии, иммунологии и паразитологии разрабатываются диагностика и профилактика инфекционных и паразитарных болезней, развивается эпидемиология. Учение об антибиозе лежит в основе производства антибиотиков, являющихся важнейшей частью современного арсенала химиотерапевтических средств. Данные общей и молекулярной генетики, анатомии, физиологии и биохимии составляют теоретические основы диагностики, лечения и профилактики наследственных болезней.
БИОЛОГИЯ И ПРОИЗВОДСТВО
Впервые практика стала формулировать свои заказы биологии с введением в эту науку экспериментального метода. Тогда биология оказывала влияние на практику опосредованно, через медицину. Прямое влияние на материальное производство началось с создания биотехнологии в тех областях промышленности, которые основываются на биосинтезирующей деятельности микроорганизмов. Уже давно в промышленных условиях осуществляется микробиологический синтез многих органических кислот, которые исполь-
зуются в пищевой и медицинской промышленности и медицине. В 40-50-е гг. XX в. была создана промышленность для производства антибиотиков, а в начале 60-х гг. XX в. - с целью производства аминокислот. Важное место в микробиологической промышленности занимает производство ферментов. Микробиологическая промышленность выпускает сейчас в больших количествах также витамины и другие вещества, необходимые в народном хозяйстве и медицине. На основе трансформирующей способности микроорганизмов основано промышленное производство веществ с фармакологическими свойствами из стероидного сырья растительного происхождения.
Наибольшие успехи в производстве различных веществ, в том числе лекарственных (инсулин, соматостатин, интерферон и др.), связаны с генетической инженерией, составляющей сейчас основу биотехнологии. Генетическая инженерия оказывает существенное влияние и на производство пищи, поиск новых источников энергии, сохранение окружающей среды. Развитие биотехнологии, теоретическую основу которой составляет биология, а методическую - генетическая инженерия, является новым этапом в развитии материального производства. Появление этой технологии есть один из моментов новейшей революции в производительных силах (А.А. Баев).
В недрах генетической инженерии и биотехнологии в XXI в. делаются первые шаги в разработке методических основ бионанотехнологии.