Оглавление

Фармакология / Под ред. проф. Р.Н. Аляутдина. - 4-е изд., перераб. и доп. - 2008. - 832 с. : ил.
Фармакология / Под ред. проф. Р.Н. Аляутдина. - 4-е изд., перераб. и доп. - 2008. - 832 с. : ил.
ГЛАВА 2 ФАРМАКОДИНАМИКА

ГЛАВА 2 ФАРМАКОДИНАМИКА

Фармакодинамика включает понятия о фармакологических эффектах, локализации действия и механизмах действия ЛВ (т.е. представления о том, как, где и каким образом ЛВ действуют в организме). К фармакодинамике относится также понятие о видах действия ЛВ.

2.1. ФАРМАКОЛОГИЧЕСКИЕ ЭФФЕКТЫ, ЛОКАЛИЗАЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Фармакологические эффекты - изменения функ- ции органов и систем организма, вызываемые ЛВ. К фармакологическим эффектам ЛВ относятся, например, повышение частоты сердечных сокращений, снижение артериального давления, повышение порога болевой чувствительности, снижение температуры тела, увеличение продолжительности сна, устранение бреда и галлюцинаций и т.п. Каждое вещество, как правило, вызывает ряд определенных, характерных для него фармакологических эффектов. При этом одни фармакологические эффекты ЛВ являются полезными - благодаря им ЛВ применяют в медицинской практике (основные эффекты),

а другие не используются и, более того, являются нежелательными (побочные эффекты).

Для многих веществ известны места их преимущественного действия в организме - т.е. локализация действия. Одни вещества преимущественно действуют на определенные структуры головного мозга (противопаркинсонические, антипсихотические средства), другие в основном действуют на сердце (сердечные гликозиды).

Благодаря современным методическим приемам, можно определить локализацию действия веществ не только на системном и органном, но на клеточном и молекулярном уровнях. Например, сердечные гли- козиды действуют на сердце (органный уровень), на кардиомиоциты (клеточный уровень), на Na+-, К+-АТФазу мембран кардиомиоцитов (молекулярный уровень).

Одни и те же фармакологические эффекты могут быть вызваны различными способами. Так, есть вещества, которые вызывают сни- жение артериального давления, уменьшая синтез ангиотензина II (ингибиторы АПФ), или блокируя поступление Са2+ в гладкомышечные клетки (блокаторы потенциалзависимых кальциевых каналов) или уменьшая выделение норадреналина из окончаний симпатических нервов (симпатолитики). Способы, с помощью которых ЛВ вызывают фармакологические эффекты, определяются как м е х а н и з - мы действия.

Фармакологические эффекты большинства ЛВ вызываются их действием на определенные молекулярные субстраты, так называемые «мишени».

К основным молекулярным «мишеням» для ЛВ относятся рецепторы, ионные каналы, ферменты, транспортные системы.

Рецепторы

А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами

Рецепторы представляют собой функционально активные макромолекулы или их фрагменты (в основном это белковые молекулы - липопротеины, гликопротеины, нуклеопротеины и др.). При взаимодействии веществ (лигандов) с рецепторами возникает цепь биохимических реакций, приводящая к развитию определенных

фармакологических эффектов. Рецепторы служат мишенями для эндогенных лигандов (нейромедиаторов, гормонов, других эндоген- ных биологически активных веществ), но могут взаимодействовать и с экзогенными биологически активными веществами, в том числе с ЛВ. Рецепторы взаимодействуют только с определенными веществами (имеющими определенную химическую структуру и пространственную ориентацию), т.е. обладают избирательностью, поэтому их называют специфическими рецепторами.

Рецепторы не являются стабильными, постоянно существующими структурами клеток. Количество их может увеличиваться вследствие преобладания синтеза рецепторных белков или уменьшаться вследствие превалирования процесса их деградации. Кроме того, рецепторы могут терять свою функциональную активность (десенситизация), вследствие чего при взаимодействии рецептора с лигандом не возникают биохимические реакции, приводящие к фармакологическому эффекту. Все эти процессы регулируются концентрацией лиганда и длительностью его воздействия на рецепторы. При длительном воздействии лиганда развивается десенситизация рецепторов и/или снижение их количества (down-регуляция), и, наоборот, отсутствие лиганда (или снижение его концентрации) приводит к увеличению количества рецепторов (up-регуляция).

Рецепторы могут находиться в мембране клеток (мембранные рецепторы) или внутри клеток - в цитоплазме или ядре (внутрикле- точные рецепторы) (рис. 2-1).

Мембранные рецепторы. В мембранных рецепторах выделяют внеклеточный и внутриклеточный домены. На внеклеточном домене имеются места связывания для лигандов (веществ, взаимодействующих с рецепторами). Внутриклеточные домены взаимодействуют с эффекторными белками (ферментами или ионными каналами) или сами обладают ферментативной активностью.

Известны три вида мембранных рецепторов.

1. Рецепторы, непосредственно сопряженные с ферментами. Поскольку внутриклеточный домен этих рецепторов проявляет ферментативную активность, их называют также рецепторами-ферментами, или каталитическими рецепторами. Большинство рецепторов этой группы обладает тирозинкиназной активностью. При связывании рецептора с веществом происходит активация тирозинкиназы, которая фосфорилирует внутриклеточные белки и таким образом изменяет их активность. К этим рецепторам относят рецепторы для инсулина, некоторых факторов роста и цитокинов. Известны рецепторы, непосредственно связанные с гуанилатциклазой (при воздействии на них предсердного натрийуретического фактора, происходит активация гуанилатциклазы, и в клетках увеличивается содержание циклического гуанозинмонофосфата).

2. Рецепторы, непосредственно сопряженные с ионными каналами, состоят из нескольких субъединиц, которые пронизывают клеточную мембрану и формируют ионный канал. При связывании вещества с внеклеточным доменом рецептора ионные каналы открываются, в результате изменяется проницаемость клеточных мембран для различных ионов. К таким рецепторам относятся Н-холинорецепторы, рецепторы к гамма-аминомасляной кислоте (ГАМК), относящиеся к подтипу А, глициновые рецепторы, глутаматные рецепторы.

 Н-холинорецептор состоит из пяти субъединиц, пронизывающих клеточную мембрану. При связывании двух молекул ацетилхолина с двумя α-субъединицами рецептора открывается натриевый канал и ионы натрия поступают в клетку, вызывая деполяризацию клеточной мембраны (в скелетных мышцах это приводит к мышечному сокращению).

 ГАМКА-рецепторы непосредственно сопряжены с хлорными каналами. При взаимодействии рецепторов с ГАМК хлорные каналы открываются и ионы хлора поступают в клетку, вызывая

гиперполяризацию клеточной мембраны (это приводит к усилению тормозных процессов в ЦНС). Таким же образом функцио- нируют глициновые рецепторы. 3. Рецепторы, взаимодействующие с G-белками. Эти рецепторы взаимодействуют с ферментами и ионными каналами клеток через белки-посредники (G-белки - гуанозинтрифосфат (GTP)-связывающие белки). При действии вещества на рецептор α-субъединица G-белка связывается с гуанозинтрифосфатом. При этом комплекс G-белок-гуанозинтрифосфат вступает во взаимодействие с ферментами или ионными каналами. Как правило, один рецептор сопряжен с несколькими G-белками, а каждый G-белок может одновременно взаимодействовать с несколькими молекулами ферментов или несколькими ионными каналами. В результате такого взаимодействия происходит усиление (амплификация) эффекта.

Хорошо изучено взаимодействие G-белков с аденилатциклазой и фосфолипазой С.

Аденилатциклаза - мембраносвязанный фермент, гидролизующий АТФ. В результате гидролиза АТФ образуется циклический аденозинмонофосфат (цАМФ), который активирует цАМФ-зависимые протеинкиназы, фосфорилирующие клеточные белки. При этом изменяется активность белков и регулируемых ими процессов. По влиянию на активность аденилатциклазы G-белки подразделяются на Gs-белки, стимулирующие аденилатциклазу, и Gi-белки, ингибирующие этот фермент. Примером рецепторов, взаимодействующих с Gs-белками, являются β1-адренорецепторы (опосредуют стимулирующее влияние на сердце симпатической иннервации), а рецепторов, взаимодействующих с Gi-белками - М2-холинорецепторы (опосредуют тормозное влияние на сердце парасимпатической иннервации). Эти рецепторы локализованы в мембране кардиомиоцитов.

При стимуляции β1-адренорецепторов повышается активность аденилатциклазы и увеличивается содержание цАМФ в кардиомиоцитах. В результате активируется протеинкиназа, которая фосфорилирует кальциевые каналы мембран кардиомиоцитов. Через эти каналы ионы кальция поступают в клетку. Вход Са2+ в клетку увеличивается, что приводит к повышению автоматизма синусного узла и увеличению частоты сердечных сокращений. Внутриклеточные эффекты противоположной направленности развиваются при стимуляции М2-холинорецепторов кардиомиоцитов, в результате происходит снижение автоматизма синусного узла и частоты сердечных сокращений.

С фосфолипазой С взаимодействуют Gq-белки, вызывая ее активацию. Примером рецепторов, сопряженных с Gq-белками, являются агадренорецепторы гладкомышечных клеток сосудов (опосредующие влияние на сосуды симпатической иннервации). При стимуляции этих рецепторов повышается активность фосфолипазы С. Фосфолипаза С гидролизует фосфатидилинозитол-4,5-дифосфат клеточных мембран с образованием гидрофильного вещества инозитол-1,4,5-трифосфа- та, который взаимодействует с кальциевыми каналами саркоплазматического ретикулума клетки и вызывает высвобождение Са2+ в цитоплазму. При повышении концентрации Са2+ в цитоплазме гладкомышечных клеток увеличивается скорость образования комплекса Са2+-кальмодулин, который активирует киназу легких цепей миозина. Этот фермент фосфорилирует легкие цепи миозина, в результате чего облегчается взаимодействие актина с миозином, и происходит сокращение гладких мышц сосудов.

К рецепторам, взаимодействующим с G-белками, относятся также дофаминовые рецепторы, некоторые подтипы серотониновых (5-НТ) рецепторов, опиоидные рецепторы, гистаминовые рецепторы, рецепторы для большинства пептидных гормонов и др.

Внутриклеточные рецепторы представляют собой растворимые цитозольные или ядерные белки, которые опосредуют регулирующее действие веществ на транскрипцию ДНК. Лигандами внутриклеточных рецепторов являются липофильные вещества (стероидные и тиреоидные гормоны, витамины А, Д).

Взаимодействие лиганда (например, глюкокортикоидов) с цитозольными рецепторами вызывает их конформационное изменение, в результате комплекс вещество-рецептор перемещается в ядро клетки, где связывается с определенными участками молекулы ДНК. Происходит изменение (активация или репрессия) транскрипции генов, кодирующих синтез различных функционально активных белков (ферментов, цитокинов и т.д.). Увеличение (или уменьшение) синтеза ферментов и других белков приводит к изменению биохи- мических процессов в клетке и возникновению фармакологических эффектов. Так, глюкокортикоиды, активируя гены, ответственные за синтез ферментов глюконеогенеза, стимулируют синтез глюкозы, что способствует развитию гипергликемии. В результате репрессии генов, кодирующих синтез цитокинов, молекул межклеточной адгезии, циклооксигеназы, глюкокортикоиды оказывают иммунодепрессивное и противовоспалительное действие. Фармакологические

эффекты веществ при их взаимодействии с внутриклеточными рецепторами развиваются медленно (в течение нескольких часов и даже суток).

Взаимодействие с ядерными рецепторами характерно для тиреоидных гормонов, витаминов А (ретиноидов) и Д. Обнаружен новый подтип ядерных рецепторов - рецепторы, активируемые пролифераторами пероксисом. Эти рецепторы участвуют в регуляции липидного обмена и других метаболических процессов и являются мишенями для клофибрата (гиполипидемического препарата).

Б. Связывание вещества с рецептором. Понятие об аффинитете

Для того чтобы ЛВ подействовало на рецептор, оно должно с ним связаться. В результате образуется комплекс «вещество-рецептор». Образование подобного комплекса осуществляется с помощью межмолекулярных связей. Существует несколько видов таких связей.

Ковалентные связи - самый прочный вид межмолекулярных связей. Они образуются между двумя атомами за счет общей пары электронов. Ковалентные связи наиболее часто обеспечивают необратимое связывание веществ, однако они не характерны для взаимодействия ЛВ с рецепторами.

Ионные связи менее прочные, возникают между группировками, несущими разноименные заряды (электростатическое взаимо- действие).

Ион-дипольные и диполь-дипольные связи близки по характеру к ионным связям. В электронейтральных молекулах ЛВ, попадающих в электрическое поле клеточных мембран или находящихся в окружении ионов, происходит образование индуцированных диполей. Ионные и дипольные связи характерны для взаимодействия ЛВ с рецепторами.

Водородные связи играют весьма существенную роль во взаимодействии ЛВ с рецепторами. Атом водорода способен связывать атомы кислорода, азота, серы, галогенов. Водородные связи - слабые, для их образования необходимо, чтобы молекулы находились друг от друга на расстоянии не более 0,3 нм.

Ван-дер-ваальсовы связи - наиболее слабые связи, образуются между двумя любыми атомами, если они находятся на расстоянии не более 0,2 нм. При увеличении расстояния эти связи ослабевают.

Гидрофобные связи образуются при взаимодействии неполярных молекул в водной среде.

Для характеристики связывания вещества с рецептором используют термин aффинитет.

Аффинитет (от лат. affinis - родственный) - способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор». Кроме того, термин «аффинитет» используют для характеристики прочности связывания вещества с рецептором (т.е. продолжительности существования комплекса «вещество-рецептор»). Количественной мерой аффинитета как прочности связывания вещества с рецептором является константа диссоциации d).

Константа диссоциации равна концентрации вещества, при которой половина рецепторов в данной системе связана с веществом. Выражается этот показатель в молях/л (М). Между аффинитетом и константой диссоциации существует обратно пропорциональное соотношение: чем меньше Кd, тем выше аффинитет. Например, если Кd вещества А равна 10-3 М, а Кd вещества В равна 10-10 М, аффинитет вещества В выше, чем аффинитет вещества А.

В. Внутренняя активность лекарственных веществ. Понятие об агонистах и антагонистах рецепторов

Вещества, которые обладают аффинитетом, могут иметь внутреннюю активность.

Внутренняя активность - способность вещества при взаимодействии с рецептором стимулировать его и таким образом вызывать определенные эффекты.

В зависимости от наличия внутренней активности ЛВ подразделяют на aгонисты и aнтагонисты рецепторов.

Агонисты (от греч. agonistes - соперник, agon - борьба) или миметики - вещества, обладающие аффинитетом и внутренней активностью. При взаимодействии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецеп- торов, в результате чего возникает цепь биохимических реакций и развиваются определенные фармакологические эффекты.

Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект (обладают максимальной внутренней активностью).

Частичные агонисты при взаимодействии с рецепторам вызывают эффект, меньший максимального (не обладают максимальной внутренней активностью).

Антагонисты (от греч. antagonisma - соперничество, anti - против, agon - борьба) - вещества, обладающие аффинитетом, но лишенные внутренней активности. Связываясь с рецепторами, они препятствуют действию на эти рецепторы эндогенных агонистов (нейромедиаторов, гормонов). Поэтому антагонисты также называют б л о к а т о р а м и рецепторов. Фармакологические эффекты антагонистов обусловлены устранением или ослаблением действия эндогенных агонистов данных рецепторов. При этом возникают эффекты, противоположные эффектам агонистов. Так, ацетилхолин вызывает брадикардию, а антагонист М-холинорецепторов атропин, устраняя действие ацетилхолина на сердце, повышает частоту сердечных сокра- щений.

Если антагонисты занимают те же места связывания, что и агонисты, они могут вытеснять друг друга из связи с рецепторами. Подобный вид антагонизма обозначают как конкурентный антагонизм, а антагонисты называют конкурентными антагониста- м и . Конкурентный антагонизм зависит от сравнительного аффинитета конкурирующих веществ к данному рецептору и их концентрации. В достаточно высоких концентрациях даже вещество с низким аффинитетом может вытеснить вещество с более высоким аффинитетом из связи с рецептором. Поэтому при конкурентном антагонизме эффект агониста может быть полностью восстановлен при увеличении его концентрации в среде. Конкурентный антагонизм часто используют для устранения токсических эффектов ЛВ.

Частичные антагонисты также могут конкурировать с полными агонистами за места связывания. Вытесняя полные агонисты из связи с рецепторами, частичные агонисты уменьшают их эффекты и поэтому в клинической практике могут быть использованы вместо антагонистов. Например, частичные агонисты β-адренорецепторов (пиндолол) так же, как антагонисты этих рецепторов (пропранолол, атенолол) применяют при лечении гипертонической болезни.

Неконкурентный антагонизм развивается, когда антагонист занимает так называемые аллостерические места связывания на рецепторах (участки макромолекулы, не являющиеся местами связывания агониста, но регулирующие активность рецепторов). Неконкурентные антагонисты изменяют конформацию рецепторов

таким образом, что они теряют способность взаимодействовать с агонистами. При этом увеличение концентрации агониста не может привести к полному восстановлению его эффекта. Неконкурентный анта- гонизм также имеет место при необратимом (ковалентном) связывании вещества с рецептором.

Некоторые ЛВ сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают как агонистыантагонисты (например, буторфанол - антагонист μ и агонист κ опиоидных рецепторов).

Другие «мишени» для лекарственных веществ

К другим «мишеням» относят ионные каналы, ферменты, транспортные белки.

Ионные каналы. Одной из основных «мишеней» для ЛВ являются потенциалзависимые ионные каналы, избирательно проводящие Na+, Са2+, К+ и другие ионы через клеточную мембрану. В отличие от рецептор-управляемых ионных каналов, открываемых при взаимодействии вещества с рецептором, эти каналы регулируются потенциалом действия (открываются при деполяризации клеточной мембраны). ЛВ могут или блокировать потенциалзависимые ионные каналы и таким образом нарушать поступление через них ионов, или активи- ровать, т.е. способствовать прохождению ионных токов. Большинство ЛВ блокируют ионные каналы.

Местные анестетики блокируют потенциалзависимые Nа+-каналы. К числу блокаторов Na+-каналов относятся и многие противоаритмические средства (хинидин, лидокаин, прокаинамид). Некоторые противоэпилептические средства (фенитоин, карбамазепин) также блокируют потенциалзависимые Nа+-каналы, и с этим связана их противосудорожная активность. Блокаторы натриевых каналов нарушают вхождение в клетку Na+ и таким образом препятствуют деполяризации клеточной мембраны.

Весьма эффективными при лечении многих сердечно-сосудистых заболеваний (гипертонической болезни, сердечных аритмий, стенокардии) оказались блокаторы Са2+-каналов (нифедипин, верапамил и др.). Ионы кальция принимают участие во многих физиологических процессах: в сокращении гладких мышц, генерации импульсов в синусно-пред- сердном узле и проведении возбуждения по предсердно-желудочковому узлу, агрегации тромбоцитов и др. Блокаторы медленных кальциевых

каналов препятствуют вхождению ионов кальция внутрь клетки через потенциалзависимые каналы и вызывают расслабление гладких мышц сосудов, уменьшение частоты сокращений сердца и АВ-проводимости, нарушают агрегацию тромбоцитов. Некоторые блокаторы кальциевых каналов (нимодипин, циннаризин) преимущественно расширяют сосуды мозга и оказывают нейропротекторное действие (препятствуют поступлению избыточного количества Са2+ внутрь нейронов).

В качестве лекарственных средств используются как активаторы, так и блокаторы калиевых каналов. Активаторы калиевых каналов (миноксидил) нашли применение в качестве антигипертензивных средств. Они способствуют выходу ионов калия из клетки, что приводит к гиперполяризации клеточной мембраны и уменьшению тонуса гладких мышц сосудов. В результате происходит снижение артериального давления. ЛВ, блокирующие потенциалзависимые калиевые каналы (амиодарон, соталол), нашли прменение при лечении аритмий сердца. Они препятствуют выходу К+ из кардиомиоцитов, вследствие чего увеличивают продолжительность потенциала действия и удлиняют эффективный рефрактерный период (ЭРП). Блокада АТФ-зависимых калиевых каналов в β-клетках поджелудочной железы приводит к повышению секреции инсулина; блокаторы этих каналов (производные сульфонилмочевины) применяют как противодиабетические средства.

Ферменты. Многие ЛВ являются ингибиторами ферментов. Ингибиторы МАО нарушают метаболизм (окислительное дезаминирование) катехоламинов (норадреналина, дофамина, серотонина) и повышают их содержание в ЦНС. На этом принципе основано действие антидепрессантов - ингибиторов МАО (например, ниаламида). Механизм действия нестероидных противовоспалительных средств связан с ингибированием циклооксигеназы, в результате снижается биосинтез простагландинов Е2 и I2 и развивается прововоспалитель- ное действие. Ингибиторы ацетилхолинэстеразы (антихолинэстеразные средства) препятствуют гидролизу ацетилхолина и повышают его содержание в синаптической щели. Препараты этой группы применяют для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

Транспортные системы. ЛВ могут действовать на транспортные системы (транспортные белки), переносящие молекулы некоторых веществ или ионы через мембраны клеток. Например, трициклические антидепрессанты блокируют транспортные белки, которые переносят норадреналин и серотонин через пресинаптическую мемб-

рану нервного окончания (блокируют обратный нейрональный захват норадреналина и серотонина). Сердечные гликозиды блокируют К+-АТФазу мембран кардиомиоцитов, осуществляющую транспорт Na+ из клетки в обмен на К+.

Возможны и другие «мишени», на которые могут действовать ЛС. Так, антацидные средства нейтрализуют соляную кислоту желудка, их применяют при повышенной кислотности желудочного сока (гиперацидном гастрите, язвенной болезни желудка).

Перспективной «мишенью» для ЛС являются гены. С помощью избирательно действующих ЛС возможно оказывать прямое влияние на функцию определенных генов.

2.2. ВИДЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Различают следующие виды действия: местное и резорбтивное, рефлекторное, прямое и косвенное, основное и побочное и некоторые другие.

Местное действие ЛВ оказывает при контакте с тканями в месте его нанесения (обычно это кожа или слизистые оболочки). Например, при поверхностной анестезии местный анестетик действует на окончания чувствительных нервов только в месте нанесения на слизистую оболочку. Для оказания местного действия ЛВ назначают в форме мазей, примочек, полосканий, пластырей. При назначении некоторых ЛВ в виде глазных или ушных капель также рассчитывают на их местное действие. Однако какое-то количество ЛВ обычно всасывается с места нанесения в кровь и оказывает общее (резорбтивное) действие. При местном применении ЛВ возможно также рефлекторное действие.

Резорбтивное действие (от лат. resorbeo - поглощаю) - эффекты, вызываемые ЛВ после всасывания в кровь или непосредствен- ного введения в кровеносный сосуд и распределения в организме. При резорбтивном действии, как и при местном, вещество может возбуждать чувствительные рецепторы и вызывать рефлекторные реакции.

Рефлекторное действие. Некоторые ЛВ способны возбуждать окончания чувствительных нервов кожи, слизистых оболочек (экстерорецепторы), хеморецепторы сосудов (интерорецепторы) и вызывать рефлекторные реакции со стороны органов, расположенных в удалении от места непосредственного контакта вещества с чувствительными рецепторами. Примером возбуждения экстерорецепторов

кожи эфирным горчичным маслом является действие горчичников. Лобелин при внутривенном введении возбуждает хеморецепторы сосудов, что приводит к рефлекторной стимуляции дыхательного и сосудодвигательного центров.

Прямое (первичное) действие ЛВ на сердце, сосуды, кишечник и другие органы развивается при непосредственном воздействии на эти органы. Например, сердечные гликозиды вызывают кардиотонический эффект (усиление сокращений миокарда) вследствие их непосредственного влияния на кардиомиоциты. Вызываемое же сердечными гликозидами повышение диуреза у больных с сердечной недостаточностью обусловлено увеличением сердечного выброса и улучшением гемодинамики. Такое действие, при котором ЛВ изменяет функцию одних органов, воздействуя на другие органы, обозначают как косвенное (вторичное) действие.

Основное действие. Действие, ради которого применяют ЛВ при лечении данного заболевания. Например, фенитоин обладает противосудорожными и антиаритмическими свойствами. У больного эпилепсией основное действие фенитоина - противосудорожное, а у больного с сердечной аритмией, вызванной передозировкой сердечных гликозидов, - антиаритмическое.

Все остальные (кроме основного) эффекты ЛВ, возникающие при его приеме в терапевтических дозах, расценивают как п о б о ч н о е действие. Эти эффекты часто бывают неблагоприятными (отрицательными) (см. главу «Побочное и токсическое действие лекарственных веществ»). Например, ацетилсалициловая кислота может вызвать изъязвление слизистой оболочки желудка, антибиотики из группы аминогликозидов (канамицин, гентамицин и др.) - нарушение слуха. Отрицательное побочное действие часто служит причиной ограничения применения того или иного ЛВ и даже исключения его из списка лекарственных препаратов.

Избирательное действие ЛВ направлено преимущественно на один орган или систему организма. Так, сердечные гликози- ды обладают избирательным действием на миокард, окситоцин - на матку, снотворные средства - на ЦНС.

Центральное действие развивается вследствие прямого влияния ЛВ на ЦНС. Центральное действие характерно для веществ, проникающих через ГЭБ. Для снотворных средств, антидепрессантов, анксиолитиков, средств для наркоза это основное действие. В то же время центральное действие может быть побочным (нежелательным).

Так, многие антигистаминные средства вследствие центрального действия вызывают сонливость.

Периферическое действие обусловлено влиянием ЛВ на периферический отдел нервной системы или на органы и ткани. Курареподобные средства (миорелаксанты периферического действия) расслабляют скелетные мышцы, блокируя передачу возбуждения в нервно-мышечных синапсах, некоторые периферические вазодилататоры расширяют кровеносные сосуды, действуя непосредственно на гладкомышечные клетки. Для веществ с основным центральным действием периферические эффекты обычно побочные. Например, антипсихотическое средство хлорпромазин вызывает расширение сосудов и снижение АД (нежелательное действие), блокируя периферические α-адренорецепторы.

Обратимое действие является следствием обратимого связывания ЛВ с «мишенями» (рецепторами, ферментами). Действие такого вещества можно прекратить путем его вытеснения из связи c «мишенью» другим ЛВ.

Необратимое действие возникает, как правило, в результате прочного (ковалентного) связывания ЛВ с «мишенями». Например, ацетилсалициловая кислота необратимо блокирует циклооксигеназу, поэтому действие препарата прекращается лишь после синтеза нового фермента.

Фармакология / Под ред. проф. Р.Н. Аляутдина. - 4-е изд., перераб. и доп. - 2008. - 832 с. : ил.

LUXDETERMINATION 2010-2013