Пожалуйста, войдите или зарегистрируйтесь.

Сообщество студентов Кировской ГМА

Январь 17, 2017, 22:19:34

Автор Тема: Генетика и экология микроорганизмов Занятие №17  (Прочитано 10512 раз)

Оффлайн Lux

  • Administrator
  • Super Star
  • *****
  • Сообщений: 1942
  • Карма: +3/-1
  • Пол: Мужской
  • «Мы русские, мы всё одолеем» - А.Суворов
    • http://vkontakte.ru/club21407095
    • Сообщество студентов Кировской ГМА
  • Курс: ^|^|^

Генетика бактерий. Мутационная изменчивость. Репарация.

В процессе становления генетики как науки можно выделить несколько этапов.

    До конца 19 в. в биологии выдвигались различные гипотезы о природе наследственности и изменчивости; основными предпосылками для формирования научных представлений об этих явлениях послужили данные наблюдений о сущности полового размножения у животных и растений, результаты опытов по гибридизации растений и развитие учения о клетке. Основы современных представлений о наследственности и изменчивости организмов были впервые изложены чешским исследователем Менделем (G.J. Mendel) в 1865 г. Мендель установил основные закономерности поведения наследственных признаков в гибридном потомстве. Он сделал вывод, что формирование каждого наследственного признака определяется парой материальных наследственных задатков, один из которых организм получает от матери, другой — от отца, а конкретная реализация признака определяется взаимоотношениями доминантности (преобладания) — рецессивности (подавления) между материнским и отцовским задатками; при созревании половых клеток в каждую отдельную клетку попадает только по одному гену от каждой пары генов. Совокупность эмпирических и теоретических положений Менделя получила название «менделизм». В начале 20 в. опыты ботаников, зоологов и наблюдения врачей, проведенные независимо друг от друга, показали универсальное значение принципов менделизма для живой природы и человека.

    Важнейшим шагом в развитии генетики стад морганизм, построение Морганом (Th. Н. Morgan) и его сотрудниками в 1910—1915 гг. хромосомной теории наследственности, согласно которой гены располагаются на хромосомах в линейной последовательности и воспроизводятся при клеточных делениях, а парные хромосомы могут обмениваться своими участками (явление кроссинговера), что приводит к рекомбинации генетического материала. Следующим шагом было установление химической природы хромосомных генов. Советский генетик Н.К. Кольцов одним из первых развил представление об их макромолекулярной природе (1927 г.), а Н.В. Тимофеев-Ресовский с соавторами в середине 30-х гг. 20 в. вычислил примерный объем гена. В 1944 г. Эйвери (О.Т. Avery) с соавторами показал, что генетический материал представляет собой ДНК. В 1953 г. Уотсон (J.D. Watson) и Крик (F.Н.С. Crick) предложили модель строения ДНК, механизм ее репродукции и мутирования, а несколько позже создали теорию универсального генетического кода (см. Ген), с помощью которого генетическая информация, зашифрованная в ДНК, реализуется в структуре белка. Эти открытия означали переход генетики на молекулярный уровень исследования.

    В самом начале 20 в. де Фризом (Н. de Vries) была сформулирована мутационная теория, хотя экспериментальное получение мутаций долгое время не удавалось. Впервые в 1925 г. советские микробиологи Г.А. Надсон и Г.С. Филиппов показали, что после облучения дрожжевых клеток ионизирующим излучением возникают разнообразные радиорасы, свойства которых воспроизводятся в потомстве. В 1927 г. Мёллер (Н.J. Muller) в точных опытах на дрозофилах с учетом дозы облучения установил возникновение новых наследственных мутаций. Позже И.А. Рапопорт и Ауэрбах (Ch. Auerbach) открыли явление мутагенеза под влиянием химических веществ. Теперь известно, что в окружающей нас природной и особенно техногенной среде содержится много разнообразных химических, физических и биологических факторов (мутагенов), способных вызывать мутации у всех живых организмов, включая человека (см. Мутагенез). Эти мутации могут быть и патологическими. К концу 80-х годов 20 в. у человека выявлено свыше 4 тысяч мутантных фенотипов. Особое значение для слежения за частотой мутирования приобрел анализ появления мутаций по белкам крови. Мутационный анализ позволил изучить структуру гена гемоглобина и другие важные особенности строения, функции и организации генетического материала у человека.

    В начале 20 в. датский генетик Иоганнсен (W. Johannsen) сформулировал понятия «генотип» — совокупности наследственных задатков и «фенотип» — совокупности их проявлений; советский биолог И.И. Шмальгаузен ввел понятие «норма реакции генотипа», в пределах которой может варьировать его проявление в генотипе в ответ на изменение условий среды; советскими генетиками Б.Л. Астауровым и Н.В. Тимофеевым-Ресовским в 20—30-е гг. 20 в. были разработаны представления о комплексной обусловленности признаков организма взаимодействием генотипических, внутриорганизменных и внешнесредовых факторов. В 1944 г. американские генетики Бидл (G.W. Beadle) и Тейтем (Е.L. Tatum), обобщив опыт изучения биохимических мутантов у микроскопических грибов, предложили гипотезу о регуляции генами синтеза ферментов, выражаемую принципом «один ген — один фермент», что перевело феногенетику на биохимический, а затем и на молекулярный уровень.

    В 20-е гг. 20 в. параллельно и независимо друг от друга советским ученым С.С. Четвериковым, английскими учеными Фишером (R. Fisher) и Холдейном (J. В.S. Haldane) и американским ученым Райтом (S. Wright) были заложены основы популяционной генетики, сформулировано представление о генетической гетерогенности популяций, о роли системы скрещивания, колебаний численности, миграций организмов, мутаций репродуктивной изоляции и естественного отбора в изменениях генотипического состава популяций и их эволюции. Позже популяционная генетика составила основу так называемой синтетической теории эволюции (см. Эволюционное учение).

    Современная генетика характеризуется углублением всех ее разделов до молекулярного уровня исследования, развитием сети междисциплинарных подходов, особенно в контакте с физико-химической биологией, кибернетикой, проникновение генетической методологии и подходов во все биологические науки, а также в антропологию и общую патологию человека.

    Первостепенной задачей генетики стали оценка и последующее длительное динамическое слежение (мониторинг) за возможными отрицательными генетическими последствиями применения химикатов и других техногенных факторов, присутствующих в окружающей среде, как для самого человека, так и для животных, растений и микроорганизмов экологической среды человека. Значение генетического мониторинга факторов окружающей среды тем более велико, что мутагенез наряду с тератогенезом и канцерогенезом составляет основной комплекс отдаленных опасных последствий повышения концентрации биологически активных факторов в биосфере. Поэтому генетико-гигиеническое нормирование содержания подобных факторов в окружающей среде является обязательным компонентом профилактики заболеваемости человека.

Организация наследственного материала бактерий


Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены.

Функциональными единицами генома бактерий, кроме хромосомных генов, являются:

1) IS-последовательности;

2) транспозоны;

3) плазмиды.

IS-последовательности – это короткие фрагменты ДНК. Они не несут структурных (кодирующих белок) генов, а содержат только гены, ответственные за транспозицию (способность перемещаться по хромосоме и встраиваться в различные ее участки).

Транспозоны – это более крупные молекулы ДНК. Помимо генов, ответственных за транспозицию, они содержат и структурный ген. Транспозоны способны перемещаться по хромосоме. Их положение сказывается на экспрессии генов. Транспозоны могут существовать и вне хромосомы (автономно), но неспособны к автономной репликации.

Плазмиды – дополнительный внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. Плазмиды способны к автономной репликации, т. е. независимо от хромосомы или под слабым ее контролем. За счет автономной репликации плазмиды могут давать явление амплификации: одна и та же плазмида может находиться в нескольких копиях, тем самым усиливая проявление данного признака.

В зависимости от свойств признаков, которые кодируют плазмиды, различают:

1) R-плазмиды. Обеспечивают лекарственную устойчивость; могут содержать гены, ответственные за синтез ферментов, разрушающих лекарственные вещества, могут менять проницаемость мембран;

2) F-плазмиды. Кодируют пол у бактерий. Мужские клетки (F+) содержат F-плазмиду, женские (F—) – не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские – реципиента. Они отличаются поверхностным электрическим зарядом и поэтому притягиваются. От донора переходит сама F-плазмида, если она находится в автономном состоянии в клетке.

F-плазмиды способны интегрировать в хромосому клетки и выходить из интегрированного состояния в автономное. При этом захватываются хромосомные гены, которые клетка может отдавать при конъюгации;

3) Col-плазмиды. Кодируют синтез бактериоцинов. Это бактерицидные вещества, действующие на близкородственные бактерии;

4) Tox-плазмиды. Кодируют выработку экзотоксинов;

5) плазмиды биодеградации. Кодируют ферменты, с помощью которых бактерии могут утилизировать ксенобиотики.

Потеря клеткой плазмиды не приводит к ее гибели. В одной и той же клетке могут находиться разные плазмиды.

Фенотип бактериальной клетки. Генетический материал бактерий.

В наши дни приоритетным направлением естествознания можно считать молекулярную биологию. Она тесно связана с микробиологией и в известном смысле является её детищем, так как в качестве основных моделей использует бактерии и вирусы, а одно из основных направлений молекулярной биологии — молекулярная генетика — долгое время являлась не чем иным, как генетикой бактерий и бактериофагов.

Изучение генетики бактерий имеет также и несомненный прикладной интерес, например в плане установления механизмов передачи патогенных свойств и устойчивости к лекарственным препаратам.

Бактерии — удобная модель для генетических исследований. Их отличает: относительная простота строения генома, позволяющая выявлять мутанты с частотой 10-9 и ниже; гаплоидность, исключающая явление доминантности; половая дифференциация в виде донорских и реципиентных клеток; наличие обособленных, и интегрированных фрагментов ДНК (плазмид, транспозонов и т.д.); лёгкость культивирования и возможность получения популяций, содержащих миллиарды микробных тел.

Как и у других организмов, совокупность генов бактериальной клетки — геном — определяет её свойства и признаки (генотип). Фенотип бактериальной клетки — результат взаимодействий между бактерией и окружающей средой — также контролирует геном (так как сами признаки закодированы в бактериальных генах).

Генетический материал бактерий

Ядерные структуры бактерий имеют характерное строение, отличающее их от ядер эукарио-тических клеток; их образуют так называемые хроматиновые тельца, или нуклеоиды, лишённые оболочки и включающие в себя почти всю ДНК бактерии.

• Ядерные структуры можно наблюдать в фазово-контрастный микроскоп, где они выглядят как менее плотные участки цитоплазмы. Для их выявления в фиксированных мазках предложена реакция Фёльгена-Россенбёка.

• В растущих бактериальных клетках нуклеоиды активно делятся, их количество иногда достигает 2-4.
Генетика бактерий. Геном бактерии. Генотип бактериальной клетки. Фенотип бактериальной клетки. Генетический материал бактерий.
Прокариотический геном

У бактерий обычно имеется одна замкнутая кольцевидная хромосома, содержащая до 4000 отдельных генов, необходимых для поддержания жизнедеятельности и размножения бактерий, то есть бактериальная клетка гаплоидна, а удвоение хромосомы обычно сопровождается её делением.

• Некоторые виды (например, Brucella melitensis) стабильно содержат две кольцевые хромосомы, другие (Leptospira interrogans) — одну кольцевую хромосому и одну большую плазмиду, третьи — одну линейную хромосому (Streptomyces ambofaciens), то есть обладают сложными геномами.

• Бактериальная хромосома содержит до 5*106 пар оснований. Для сравнения: геном человека составляет 2,9*109пар оснований. Длина бактериальной хромосомы в развёрнутом состоянии составляет около 1 мм (Escherichia coli).

Некоторые бактерии содержат внехромосомные молекулы ДНК (плазмиды) и мобильные элементы (либо плазмидные, либо хромосомные).

Изменчивость у бактерий

Различают два вида изменчивости – фенотипическую и генотипическую.

Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу.

Генотипическая изменчивость затрагивает генотип. В основе ее лежат мутации и рекомбинации.

Мутации – изменение генотипа, сохраняющееся в ряду поколений и сопровождающееся изменением фенотипа. Особенностями мутаций у бактерий является относительная легкость их выявления.

По локализации различают мутации:

1) генные (точечные);

2) хромосомные;

3) плазмидные.

По происхождению мутации могут быть:

1) спонтанными (мутаген неизвестен);

2) индуцированными (мутаген неизвестен).

Рекомбинации – это обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом.

У бактерий существует несколько механизмов рекомбинации:

1) конъюгация;

2) слияние протопластов;

3) трансформация;

4) трансдукция.

Конъюгация – обмен генетической информацией при непосредственном контакте донора и реципиента. Наиболее высокая частота передачи у плазмид, при этом плазмиды могут иметь разных хозяев. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше этот контакт, тем большая часть донорской ДНК может быть передана реципиенту.

Слияние протопластов – механизм обмена генетической информацией при непосредственном контакте участков цитоплазматической мембраны у бактерий, лишенных клеточной стенки.

Трансформация – передача генетической информации в виде изолированных фрагментов ДНК при нахождении реципиентной клетки в среде, содержащей ДНК-донора. Для трансдукции необходимо особое физиологическое состояние клетки-реципиента – компетентность. Это состояние присуще активно делящимся клеткам, в которых идут процессы репликации собственных нуклеиновых кислот. В таких клетках действует фактор компетенции – это белок, который вызывает повышение проницаемости клеточной стенки и цитоплазматической мембраны, поэтому фрагмент ДНК может проникать в такую клетку.

Трансдукция – это передача генетической информации между бактериальными клетками с помощью умеренных трансдуцирующих фагов. Трансдуцирующие фаги могут переносить один ген или более.

Трансдукция бывает:

1) специфической (переносится всегда один и тот же ген, трансдуцирующий фаг всегда располагается в одном и том же месте);

2) неспецифической (передаются разные гены, локализация трансдуцирующего фага непостоянна).
Делай что должен, и будь что будет.

Реквизиты для пожертвований на сайт:
WebMoney R368719312927 
ЯндексДеньги 41001757556885

 

Быстрый ответ

В быстром ответе можно использовать BB-теги и смайлы.

Имя: E-mail:
Визуальная проверка:
Число серозных полостей организма у мужчин:
Переведите с латинского - membrum: