Пожалуйста, войдите или зарегистрируйтесь.

Сообщество студентов Кировской ГМА

Декабря 27, 2024, 03:38:22

Автор Тема: Вопрос 13. Нервная ткань  (Прочитано 22734 раз)

Lux

  • Administrator
  • Super Star
  • *****
  • Сообщений: 1936
  • Карма: +3/-1
    • Сообщество студентов Кировской ГМА
  • Курс: ^|^|^

Вопрос 13. Нервная ткань
« : Декабря 26, 2011, 06:39:21 »
1. Развитие нервной ткани Значение нервной ткани в организме определяется основными свойствами нервных клеток (нейронов, нейроцитов) воспринимать раздражение, приходить в состояние возбуждения, вырабатывать импульс и передавать его. Нервная ткань осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь с окружающей средой.
Нервная ткань состоит из нейроцитов, выполняющих специфическую функцию, и нейроглии, обеспечивающей существование и специфическую функцию нервных клеток и осуществляющей опорную, трофическую, разграничительную, секреторную и защитную функции. Особенностью нервной ткани является полное отсутствие межклеточного вещества.
Нервная ткань развивается из дорсального утолщения эктодермы - нервной пластинки. Края пластинки утолщаются и приподнимаются как нервные валики, между ними образуется нервный желобок. Затем нервные валики сближаются и сливаются, при этом нервная пластинка замыкается в нервную трубку и отделяется от лежащей над ней эпидермальной эктодермы. Часть клеток нервной пластинки располагается между эпидермальной эктодермой и нервной трубкой, в виде рыхлого скопления клеток - нервный гребень. Клетки гребня головного отдела участвуют в формировании ядер черепных нервов, вторым источником развития которых являются нейральные плакоды. В туловищном отделе клетки гребня распадаются на два потока клеток. Один из них, поверхностный, распространяется между эктодермой и мезодермой и дает начало пигментным клеткам кожи. Другой направляется вглубь и вентрально, проходя между сомитом и нервной трубкой, а также между мезенхимными клетками, которые выселяются из сомита. Из этих клеток формируются нейроны спинальных ганглиев и ганглиев автономной нервной системы, а также нейроглия - леммоциты.
Нейральными плакодами называются утолщения эктодермы по бокам головы. Они участвуют в формировании ганглиев 5, 7, 9, 10 пар черепных нервов.
Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, представленный вентрикулярными и нейроэпителиальными клетками. Морфологически сходные, вентрикулярные клетки неоднородны по способности к дифференцировке в различные типы клеток зрелой нервной ткани. Часть из них дает начало нейробластам, другая глиальным клеткам: эпендимоцитам, астроцитам и олигодендроглиоцитам. Глиальные клетки на протяжении всей своей жизни, в отличии от нейроцитов, сохраняют высокую пролиферативную активность. По мере дифференцировки нейробласта изменяется субмикроскопическое строение его ядра и цитоплазмы. В ядре возникают участки различной электронной плотности в виде зерен и нитей. В цитоплазме выявляются в большом количестве канальцы и цистерны эндоплазматической сети, уменьшается количество свободных рибосом и полисом, хорошего развития достигает комплекс Гольджи. Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме тонких фибрилл - пучков нейрофиламентов и микротрубочек. Количество нейрофиламентов в процессе специализации увеличивается. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отростокаксон. Позднее дифференцируются другие отросткидендриты. Нейробласты превращаются в зрелые нервные клетки - нейроны. Между нейронами устанавливаются синаптические контакты.
 
 2. Структура нейронов Нейроны, или нейроциты, различных отделов нервной системы значительно отличаются друг от друга по функциональному значению и морфологическим особенностям.
В зависимости от функции нейроны делятся на:
 
  • рецепторные (чувствительные, афферентные) - генерируют нервный импульс под влиянием различных воздействий внешней или внутренней среды организма;
  • вставочные (ассоциативные) - осуществляют различные связи между нейронами;
  • эффекторные (эфферентные, двигательные) - передают возбуждение на ткани рабочих органов, побуждая их к действию.
Характерной чертой для всех зрелых нейронов является наличие у них отростков. Эти отростки обеспечивают проведение нервного импульса по телу человека из одной его части в другую, подчас весьма удаленную, и потому длина их колеблется в больших пределах - от нескольких микрометров до 1-1,5 м.
По функциональному значению отростки нейронов делятся на два вида. Одни выполняют функцию отведения нервного импульса обычно от тел нейронов и называются аксонами или нейритами. Нейритзаканчивается концевым аппаратом или на другом нейроне, или на тканях рабочего органана мышцах, железах.
Второй вид отростков нервных клеток называется дендритами. В большинстве случаев они сильно ветвятся, чем и определяется их название. Дендриты проводят импульс к телу нейрона.
По количеству отростков нейроны делятся на три группы:
 
  • униполярные - клетки с одним отростком;
  • биполярные - клетки с двумя отростками;
  • мультиполярные - клетки, имеющие три и больше отростков.
Мультиполярные клетки наиболее распространены у млекопитающих животных и человека. Из многих отростков такого нейрона один представлен нейритом, тогда как все остальные являются дендритами.
Биполярные клетки имеют два отростка - нейрит и дендрит. Истинные биполярные клетки в теле человека встречаются редко. К ним относятся часть клеток сетчатки глаза, спирального ганглия внутреннего уха и некоторые другие. Однако по существу своего строения к биполярным клеткам должна быть отнесена большая группа афферентных, так называемых псевдоуниполярных нейронов краниальных и спинальных нервных узлов. Псевдоуниполярными они называются потому, что нейрит и дендрит этих клеток начинается с общего выроста тела, создающего впечатление одного отростка, с последующим Т-образным делением его.
Истинных униполярных клеток, то есть клеток с одним отростком - нейритом, в теле человека нет.
Нейроны человека в подавляющем большинстве содержат одно ядро, расположенное в центре, реже - эксцентрично. Двуядерные нейроны и тем более многоядерные встречаются крайне редко, например: нейроны в предстательной железе и шейке матки. Форма ядер нейронов округлая. В соответствии с высокой активностью метаболизма хроматин в их ядрах диспергирован. В ядре имеется 1, а иногда 2 и 3 крупных ядрышка.
В соответствии с высокой специфичностью функциональной активности нейронов они имеют специализированную плазмолемму, их цитоплазма богата органеллами. В цитоплазме хорошо развита эндоплазматическая сеть, рибосомы, митохондрии, комплекс Гольджи, лизосомы, нейротубулы и нейрофиламенты.
Плазмолемма нейронов, кроме функции, типичной для цитолеммы любой клетки, характеризуется способностью проводить возбуждение. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации плазмолеммы по ее дендритам к перикариону и аксону.
Обилие гранулярной эндоплазматической сети в нейроцитах соответствует высокому уровню синтетических процессов в цитоплазме и, в частности, синтеза белков, необходимых для подержания массы их перикарионов и отростков. Для аксонов, не имеющих органелл, синтезирующих белок, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1-3 мм в сутки. Это медленный ток, несущий белки, в частности ферменты, необходимые для синтеза медиаторов в окончаниях аксонов. Кроме того, существует быстрый ток (5-10 мм в час), транспортирующий главным образом компоненты, необходимые для синаптической функции. Помимо тока веществ от перикариона к терминалям аксонов и дендритов наблюдается и обратный (ретроградный) ток, посредством которого ряд компонентов цитоплазмы возвращается из окончаний в тело клетки. В транспорте веществ по отросткам нейроцитов участвуют эндоплазматическая сеть, ограниченные мембраной пузырьки и гранулы, микротрубочки и актиномиозиновая система цитоскелета.
Комплекс Гольджи в нервных клетках определяется как скопление различных по форме колечек, извитых нитей, зернышек. Клеточный центр чаще располагается между ядром и дендритами. Митохондрии расположены как в теле нейрона, так и во всех отростках. Особенно богата митохондриями цитоплазма нейроцитов в концевых аппаратах отростков, в частности в области синапсов.
Нейрофибриллы
При импрегнации нервной ткани серебром в цитоплазме нейронов выявляются нейрофибриллы, образующие плотную сеть в перикарионе клетки и ориентированные параллельно в составе дендритов и аксонов, включая их тончайшие концевые ветвления. Методом электронной микроскопии установлено, что нейрофибриллам соответствуют пучки нейрофиламентов диаметром 6-10 нм и нейротубул (нейротрубочек) диаметром 20-30 нм, расположенных в перикарионе и дендритах между хроматофильными глыбками и ориентированных параллельно аксону.
Секреторные нейроны
Способность синтезировать и секретировать биологически активные вещества, в частности медиаторы, свойственная всем нейроцитам. Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции - секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга. Секреторные нейроны имеют ряд специфических морфологических признаков:
 
  • секреторные нейроны - это крупные нейроны;
  • в цитоплазме нейронов и в аксонах находятся различной величины гранулы секрета - нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды;
  • многие секреторные нейроны имеют ядра неправильной формы, что свидетельствует об их высокой функциональной активности.
 
 3. Нейроглия Классификация нейроглии:
 
  • макроглия (глиоциты):
  • эпендимоциты;
  • астроциты;
  • олигодендроциты;
  • микроглия.
Эпендимоциты образуют плотный слой клеточных элементов, выстилающих спинномозговой канал и все желудочки мозга. Эпендимоциты, покрывающие сосудистые сплетения желудочков мозга, кубической формы. У новорожденных они имеют на своей поверхности реснички, которые позднее редуцируются. Основной функцией эпендимоцитов является процесс образования цереброспинальной жидкости и регуляция ее состава.
Астроцитыобразуют опорный аппарат центральной нервной системы. Они представляют собой мелкие клетки с многочисленными расходящимися во все стороны отростками. Различают два вида астроцитов:
 
  • протоплазматические
  • и волокнистые.
Протоплазматические астроциты располагаются преимущественно в сером веществе центральной нервной системы. Они характеризуются наличием крупного округлого ядра и множеством сильно разветвленных коротких отростков. Протоплазматические астроциты несут разграничительную и трофическую функции.
Волокнистые астроциты располагаются главным образом в белом веществе мозга. Эти клетки имеют 20-40 гладкоконтурированных, длинных, слабоветвящихся отростков, которые формируют глиальные волокна, образующие в совокупности плотную сеть - поддерживающий аппарат мозга. Отростки астроцитов на кровеносных сосудах и на поверхности мозга своими концевыми расширениями формируют периваскулярные глиальные пограничные мембраны.
Основная функция астроцитов - опорная и изоляция нейронов от внешних влияний, что необходимо для осуществления специфической деятельности нейронов.
Олигодендроциты - это самая многочисленная группа клеток нейроглии. Они окружают тела нейронов в центральной и периферической нервной системе, находятся в составе оболочек нервных волокон и в нервных окончаниях. В разных отделах нервной системы олигодендроциты имеют различную форму и представлены тремя разновидностями:
 
  • мантийные клетки, они формируют разные структуры в нервной ткани;
  • леммоциты, они окружают отростки нервных клеток, формируя чехлы из миелиновых структур;
  • концевые, они расположены на конце отростков - концевые глиальные компоненты, например, инкапсулированные нервные окончания в сосочковом слое дермы.
Микроглия - это клетки пришельцы, предполагается, что они имеют промоноцитарное происхождение, то есть из красного костного мозга. Микроглии являются глиальными макрофагами, они имеют небольшие размеры, преимущественно отростчатой формы, способны к амебоидным движениям. Таким образом на поверхности микроглии имеются 2-3 более крупных отростка, которые в свою очередь делятся на вторичные и третичные ветвления. В составе микроглии имеются все органеллы, но наиболее активен лизосомальный аппарат. При раздражении клеток микроглии их форма меняется, отростки втягиваются, клетки приобретают специфический характер, округляются. В таком виде они называются зернистыми шарами.
 
 4. Нервные волокна Отростки нервных клеток, обычно покрытые оболочками, называются нервными волокнами. В различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, поэтому в соответствии с особенностями их строения все нервные волокна делятся на две основные группы:
 
  • миелиновые
  • и безмиелиновые.
Те и другие состоят из отростка нервной клетки, который лежит в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются нейролеммоцитами (шванновскими клетками).
Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное, такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфтой. Оболочки леммоцитов при этом прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр. Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, "одевающий" осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.
Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 1 до 20 мкм. Они также состоят из осевого цилиндра, "одетого" оболочкой из нейролеммоцитов, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее.
В сформированном миелиновом волокне принято различать два слоя оболочки:
 
  • внутренний, более толстый, миелиновый слой
  • и наружный, тонкий, состоящий из цитоплазмы и ядер нейролеммоцитов - нейролемму.
Миелиновое нервное волокно представляется однородным цилиндром, в котором на определенном расстоянии друг от друга располагаются светлые линии-насечки миелина. Через некоторые интервалы встречаются участки волокна, лишенные миелинового слоя - узловые перехваты - перехваты Ранвье. Перехваты соответствуют границе смежных нейролеммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой.
В процессе развития миелинового волокна осевой цилиндр, погружаясь в нейролеммоцит, прогибает его оболочку, образуя глубокую складку, при этом формируется мезаксон. При дальнейшем развитии мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону - миелиновый слой. Наружным слоем (нейролемма) называется периферическая зона нервного волокна, содержащая оттесненную сюда цитоплазму нейролеммоцитов (шванновских клеток) и их ядра.
Осевой цилиндр нервных волокон состоит из нейроплазмы - цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокон. С поверхности осевой цилиндр покрыт мембраной - аксолеммой, обеспечивающей проведение нервного импульса. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/с, тогда как толстые миелиновые волокнасо скоростью 5-120 м/с.
В безмиелиновом волокне волна деполяризации мембраны идет по всей плазмолемме, не прерываясь, а в миелиновом волокне возникает только в области перехвата. Таким образом, для миелиновых волокон характерно сальтаторное проведение возбуждения, то есть прыжками. Между перехватами по аксолемме идет электрический ток, скорость которого выше, чем прохождение волны деполяризации.
 
 5. Регенерация нейронов и нервных волокон Нейроны являются несменяемой клеточной популяцией. Им свойственна только внутриклеточная физиологическая регенерация, заключающаяся в непрерывной смене структурных белков цитоплазмы.
Отростки нейронов и соответственно периферические нервы обладают способностью к регенерации в случае их повреждения. При этом регенерации нервных волокон предшествуют явления дегенерации. Нейролеммоциты периферического отрезка волокна уже в первые сутки резко активизируются. В цитоплазме нейролеммоцитов увеличивается количество свободных рибосом и полисом, эндоплазматической сети. В цитоплазме нейролеммоцитов образуется значительное количество шарообразных слоистых структур различных размеров. Миелиновый слой как обособленная зона нейролеммоцита исчезает. В течение 3-4 суток нейролеммоциты значительно увеличиваются в объеме. Нейролеммоциты интенсивно размножаются, и к концу 2-й недели миелин и частицы осевых цилиндров рассасываются. В резорбции продуктов принимают участие как глиальные элементы, так и макрофаги соединительной ткани.
Осевые цилиндры волокон центрального отрезка образуют на концах булавовидные расширения - колбы роста и врастают в лентовидно расположенные нейролеммоциты периферического отрезка нерва и растут со скоростью 1-4 мм в сутки. Рост нервных волокон замедляется в области терминалей. Позднее происходит миелинизация нервных волокон и восстановление терминальных структур.
Нервные окончания
Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервные окончания.
По функциональному значению нервные окончания можно разделить на три группы:
 
  • эффекторные (эффекторы);
  • рецепторные (аффекторные или чувствительные);
  • концевые аппараты, образующие межнейронные синапсы, осуществляющие связь нейронов между собой.
Эффекторные нервные окончания представлены двумя типами:
 
  • двигательные
  • и секреторные.
Двигательные нервные окончания - это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Двигательные окончания в поперечно-полосатых мышцах называются нервно-мышечными окончаниями (моторная бляшка). Они представляют собой окончания аксонов клеток двигательных ядер передних рогов спинного мозга или моторных ядер головного мозга. Нервно-мышечное окончание состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна. Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновый слой и погружается в мышечное волокно, вовлекая за собой его плазмолемму. Соединительнотканные элементы при этом переходят в наружный слой оболочки мышечного волокна. Плазмолеммы терминальных ветвей аксона и мышечного волокна разделены синаптической щелью шириной около 50 нм.
В области окончания мышечное волокно не имеет типичной поперечной исчерченности и характеризуется обилием митохондрий, скоплением круглых или слегка овальных ядер. Саркоплазма с митохондриями и ядрами в совокупности образует постсинаптическую часть синапса.
Терминальные ветви нервного волокна в мионевральном синапсе характеризуются обилием митохондрий и многочисленными пресинаптическими пузырьками, содержащими характерный для этого вида окончаний медиатор - ацетилхолин. При возбуждении ацетилхолин поступает через пресинаптическую мембрану в синаптическую щель на холинорецепторы постсинаптической (мышечной) мембраны, вызывая ее возбуждение (волну деполяризации).
Постсинаптическая мембрана моторного нервного окончания содержит фермент ацетилхолинэстеразу, разрушающий медиатор и ограничивающий этим срок его действия. Двигательные нервные окончания в гладкой мышечной ткани построены проще. Здесь тонкие пучки аксонов или их одиночные терминали, следуя между мышечными клетками, образуют четкообразные расширения (варикозы), содержащие холинергические или адренергические пресинаптические пузырьки.
Секреторные нервные окончания имеют простое строение и заканчиваются на железе. Они представляют собой концевые утолщения, или четковидные расширения волокна с синаптическими пузырьками, содержащими главным образом ацетилхолин.
 
 6. Рецепторные нервные окончания Главная функция афферентных нервных окончаний является восприятие сигналов поступающих из внешней и внутренней среды.
Рецептор- это терминальное ветвление дендрита чувствительной (рецепторной) нервной клетки.
Классификация рецепторов
По происхождению:
 
  • нейросенсорные - нейральный источник происхождения, представляют собой рецепторы нервных клеток - первичночувствительные;
  • сенсоэпителиальные - имеют не нейральное происхождение, представлены специальными клетками которые способны воспринимать раздражение - вторичночувствительные, например: инкапсулированные и неинкапсулированные нервные окончания.
По локализации:
 
  • экстерорецепторы;
  • интерорецепторы;
  • проприорецепторы.
По морфологии:
 
  • свободные;
  • несвободные (инкапсулированные: пластинчатые тельца Фатера-Пачини, осязательные тельца Мейснера, концевые колбы Краузе, сухожильные органы Гольджи; неинкапсулированные).
По специфичности восприятия (по модальности):
 
  • терморецепторы;
  • барорецепторы;
  • хеморецепторы;
  • механорецепторы;
  • болевые рецепторы.
По количеству воспринимающих раздражителей:
 
  • мономодальные;
  • полимодальные.
Межнейронные синапсы
Поляризация проведения нервного импульса по цепи нейронов определяется их специализированными контактами - синапсами.
Классификация синапсов.
По способу передачи:
 
  • Химические - проводят нервный импульс в одну сторону;
  • Электрические - проводят нервный импульс в обе стороны.
По локализации:
 
  • аксодендритические синапсы;
  • аксоаксональные синапсы;
  • аксосоматические синапсы;
  • сомасоматические синапсы;
  • дендродендритические синапсы.
По составу медиатора:
 
  • адренергические синапсы - норадреналин;
  • холинергические синапсы - ацетилхолин;
  • пептидергические синапсы;
  • пуринергические синапсы;
  • дофаминергические синапсы.
По выполняемым функциям:
 
  • возбуждающие;
  • тормозящие.
 
Делай что должен, и будь что будет.